This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dyaddisj . (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dyadmbl.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) | |
| Assertion | dyaddisjlem | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ∨ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ∨ ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dyadmbl.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) | |
| 2 | simplll | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐴 ∈ ℤ ) | |
| 3 | simplrl | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐶 ∈ ℕ0 ) | |
| 4 | 1 | dyadval | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 𝐹 𝐶 ) = 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) |
| 5 | 2 3 4 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 𝐹 𝐶 ) = 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) |
| 6 | 5 | fveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) = ( (,) ‘ 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) ) |
| 7 | df-ov | ⊢ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) = ( (,) ‘ 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) | |
| 8 | 6 7 | eqtr4di | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) = ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
| 9 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐵 ∈ ℤ ) | |
| 10 | simplrr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐷 ∈ ℕ0 ) | |
| 11 | 1 | dyadval | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ0 ) → ( 𝐵 𝐹 𝐷 ) = 〈 ( 𝐵 / ( 2 ↑ 𝐷 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) 〉 ) |
| 12 | 9 10 11 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐵 𝐹 𝐷 ) = 〈 ( 𝐵 / ( 2 ↑ 𝐷 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) 〉 ) |
| 13 | 12 | fveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) = ( (,) ‘ 〈 ( 𝐵 / ( 2 ↑ 𝐷 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) 〉 ) ) |
| 14 | df-ov | ⊢ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) = ( (,) ‘ 〈 ( 𝐵 / ( 2 ↑ 𝐷 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) 〉 ) | |
| 15 | 13 14 | eqtr4di | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) = ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) |
| 16 | 8 15 | ineq12d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ∩ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) ) |
| 17 | incom | ⊢ ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ∩ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) = ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ∩ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) | |
| 18 | 16 17 | eqtrdi | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ∩ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) ) |
| 19 | 18 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( 𝐴 / ( 2 ↑ 𝐶 ) ) ) → ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ∩ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) ) |
| 20 | 2 | zred | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐴 ∈ ℝ ) |
| 21 | 20 | recnd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐴 ∈ ℂ ) |
| 22 | 2nn | ⊢ 2 ∈ ℕ | |
| 23 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) → ( 2 ↑ 𝐶 ) ∈ ℕ ) | |
| 24 | 22 3 23 | sylancr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 2 ↑ 𝐶 ) ∈ ℕ ) |
| 25 | 24 | nncnd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 2 ↑ 𝐶 ) ∈ ℂ ) |
| 26 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝐷 ∈ ℕ0 ) → ( 2 ↑ 𝐷 ) ∈ ℕ ) | |
| 27 | 22 10 26 | sylancr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 2 ↑ 𝐷 ) ∈ ℕ ) |
| 28 | 27 | nncnd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 2 ↑ 𝐷 ) ∈ ℂ ) |
| 29 | 24 | nnne0d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 2 ↑ 𝐶 ) ≠ 0 ) |
| 30 | 21 25 28 29 | div13d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) = ( ( ( 2 ↑ 𝐷 ) / ( 2 ↑ 𝐶 ) ) · 𝐴 ) ) |
| 31 | 2cnd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 2 ∈ ℂ ) | |
| 32 | 2ne0 | ⊢ 2 ≠ 0 | |
| 33 | 32 | a1i | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 2 ≠ 0 ) |
| 34 | 3 | nn0zd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐶 ∈ ℤ ) |
| 35 | 10 | nn0zd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐷 ∈ ℤ ) |
| 36 | 31 33 34 35 | expsubd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 2 ↑ ( 𝐷 − 𝐶 ) ) = ( ( 2 ↑ 𝐷 ) / ( 2 ↑ 𝐶 ) ) ) |
| 37 | 2z | ⊢ 2 ∈ ℤ | |
| 38 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐶 ≤ 𝐷 ) | |
| 39 | znn0sub | ⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ( 𝐶 ≤ 𝐷 ↔ ( 𝐷 − 𝐶 ) ∈ ℕ0 ) ) | |
| 40 | 34 35 39 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐶 ≤ 𝐷 ↔ ( 𝐷 − 𝐶 ) ∈ ℕ0 ) ) |
| 41 | 38 40 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐷 − 𝐶 ) ∈ ℕ0 ) |
| 42 | zexpcl | ⊢ ( ( 2 ∈ ℤ ∧ ( 𝐷 − 𝐶 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝐷 − 𝐶 ) ) ∈ ℤ ) | |
| 43 | 37 41 42 | sylancr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 2 ↑ ( 𝐷 − 𝐶 ) ) ∈ ℤ ) |
| 44 | 36 43 | eqeltrrd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 2 ↑ 𝐷 ) / ( 2 ↑ 𝐶 ) ) ∈ ℤ ) |
| 45 | 44 2 | zmulcld | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( ( 2 ↑ 𝐷 ) / ( 2 ↑ 𝐶 ) ) · 𝐴 ) ∈ ℤ ) |
| 46 | 30 45 | eqeltrd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ∈ ℤ ) |
| 47 | zltp1le | ⊢ ( ( 𝐵 ∈ ℤ ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ∈ ℤ ) → ( 𝐵 < ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ↔ ( 𝐵 + 1 ) ≤ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) | |
| 48 | 9 46 47 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐵 < ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ↔ ( 𝐵 + 1 ) ≤ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
| 49 | 9 | zred | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐵 ∈ ℝ ) |
| 50 | 20 24 | nndivred | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) |
| 51 | 27 | nnred | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 2 ↑ 𝐷 ) ∈ ℝ ) |
| 52 | 27 | nngt0d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 0 < ( 2 ↑ 𝐷 ) ) |
| 53 | ltdivmul2 | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( ( 2 ↑ 𝐷 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐷 ) ) ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( 𝐴 / ( 2 ↑ 𝐶 ) ) ↔ 𝐵 < ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) | |
| 54 | 49 50 51 52 53 | syl112anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( 𝐴 / ( 2 ↑ 𝐶 ) ) ↔ 𝐵 < ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
| 55 | peano2re | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 + 1 ) ∈ ℝ ) | |
| 56 | 49 55 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐵 + 1 ) ∈ ℝ ) |
| 57 | ledivmul2 | ⊢ ( ( ( 𝐵 + 1 ) ∈ ℝ ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( ( 2 ↑ 𝐷 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐷 ) ) ) → ( ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ↔ ( 𝐵 + 1 ) ≤ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) | |
| 58 | 56 50 51 52 57 | syl112anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ↔ ( 𝐵 + 1 ) ≤ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
| 59 | 48 54 58 | 3bitr4d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( 𝐴 / ( 2 ↑ 𝐶 ) ) ↔ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ) ) |
| 60 | 49 27 | nndivred | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∈ ℝ ) |
| 61 | 60 | rexrd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ) |
| 62 | 56 27 | nndivred | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ∈ ℝ ) |
| 63 | 62 | rexrd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ) |
| 64 | 50 | rexrd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ) |
| 65 | peano2re | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) | |
| 66 | 20 65 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 + 1 ) ∈ ℝ ) |
| 67 | 66 24 | nndivred | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) |
| 68 | 67 | rexrd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ) |
| 69 | ioodisj | ⊢ ( ( ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ∧ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ) ) ∧ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ) → ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ∩ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) = ∅ ) | |
| 70 | 69 | ex | ⊢ ( ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ∧ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ) ) → ( ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) → ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ∩ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) = ∅ ) ) |
| 71 | 61 63 64 68 70 | syl22anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) → ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ∩ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) = ∅ ) ) |
| 72 | 59 71 | sylbid | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( 𝐴 / ( 2 ↑ 𝐶 ) ) → ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ∩ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) = ∅ ) ) |
| 73 | 72 | imp | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( 𝐴 / ( 2 ↑ 𝐶 ) ) ) → ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ∩ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) = ∅ ) |
| 74 | 19 73 | eqtrd | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( 𝐴 / ( 2 ↑ 𝐶 ) ) ) → ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) |
| 75 | 74 | 3mix3d | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( 𝐴 / ( 2 ↑ 𝐶 ) ) ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ∨ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ∨ ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) ) |
| 76 | 50 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) |
| 77 | 67 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) |
| 78 | simprl | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) | |
| 79 | 66 | recnd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 + 1 ) ∈ ℂ ) |
| 80 | 79 25 28 29 | div13d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) = ( ( ( 2 ↑ 𝐷 ) / ( 2 ↑ 𝐶 ) ) · ( 𝐴 + 1 ) ) ) |
| 81 | 2 | peano2zd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 + 1 ) ∈ ℤ ) |
| 82 | 44 81 | zmulcld | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( ( 2 ↑ 𝐷 ) / ( 2 ↑ 𝐶 ) ) · ( 𝐴 + 1 ) ) ∈ ℤ ) |
| 83 | 80 82 | eqeltrd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ∈ ℤ ) |
| 84 | zltp1le | ⊢ ( ( 𝐵 ∈ ℤ ∧ ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ∈ ℤ ) → ( 𝐵 < ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ↔ ( 𝐵 + 1 ) ≤ ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) | |
| 85 | 9 83 84 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐵 < ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ↔ ( 𝐵 + 1 ) ≤ ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
| 86 | ltdivmul2 | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( ( 2 ↑ 𝐷 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐷 ) ) ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ↔ 𝐵 < ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) | |
| 87 | 49 67 51 52 86 | syl112anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ↔ 𝐵 < ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
| 88 | ledivmul2 | ⊢ ( ( ( 𝐵 + 1 ) ∈ ℝ ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( ( 2 ↑ 𝐷 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐷 ) ) ) → ( ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ↔ ( 𝐵 + 1 ) ≤ ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) | |
| 89 | 56 67 51 52 88 | syl112anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ↔ ( 𝐵 + 1 ) ≤ ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
| 90 | 85 87 89 | 3bitr4d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ↔ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
| 91 | 90 | biimpa | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) → ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) |
| 92 | 91 | adantrl | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) |
| 93 | iccss | ⊢ ( ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ⊆ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) | |
| 94 | 76 77 78 92 93 | syl22anc | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ⊆ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
| 95 | 12 | fveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) = ( [,] ‘ 〈 ( 𝐵 / ( 2 ↑ 𝐷 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) 〉 ) ) |
| 96 | df-ov | ⊢ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) = ( [,] ‘ 〈 ( 𝐵 / ( 2 ↑ 𝐷 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) 〉 ) | |
| 97 | 95 96 | eqtr4di | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) = ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) |
| 98 | 97 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) = ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) |
| 99 | 5 | fveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) = ( [,] ‘ 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) ) |
| 100 | df-ov | ⊢ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) = ( [,] ‘ 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) | |
| 101 | 99 100 | eqtr4di | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) = ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
| 102 | 101 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) = ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
| 103 | 94 98 102 | 3sstr4d | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ) |
| 104 | 103 | 3mix2d | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ∨ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ∨ ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) ) |
| 105 | 104 | anassrs | ⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ∨ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ∨ ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) ) |
| 106 | 16 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ∩ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) ) |
| 107 | ioodisj | ⊢ ( ( ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ) ∧ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ∧ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ) ) ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ∩ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) = ∅ ) | |
| 108 | 107 | ex | ⊢ ( ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ) ∧ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ∧ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ) ) → ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) → ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ∩ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) = ∅ ) ) |
| 109 | 64 68 61 63 108 | syl22anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) → ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ∩ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) = ∅ ) ) |
| 110 | 109 | imp | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ∩ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) = ∅ ) |
| 111 | 106 110 | eqtrd | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) |
| 112 | 111 | 3mix3d | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ∨ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ∨ ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) ) |
| 113 | 112 | adantlr | ⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ∨ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ∨ ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) ) |
| 114 | 60 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∈ ℝ ) |
| 115 | 67 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) |
| 116 | 105 113 114 115 | ltlecasei | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ∨ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ∨ ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) ) |
| 117 | 75 116 60 50 | ltlecasei | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ∨ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ∨ ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) ) |