This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the upper bound of one open interval is less than or equal to the lower bound of the other, the intervals are disjoint. (Contributed by Jeff Hankins, 13-Jul-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioodisj | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) ) ∧ 𝐵 ≤ 𝐶 ) → ( ( 𝐴 (,) 𝐵 ) ∩ ( 𝐶 (,) 𝐷 ) ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooss1 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐶 ) → ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐵 (,) 𝐷 ) ) | |
| 2 | 1 | ad4ant24 | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) ) ∧ 𝐵 ≤ 𝐶 ) → ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐵 (,) 𝐷 ) ) |
| 3 | ioossicc | ⊢ ( 𝐵 (,) 𝐷 ) ⊆ ( 𝐵 [,] 𝐷 ) | |
| 4 | 2 3 | sstrdi | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) ) ∧ 𝐵 ≤ 𝐶 ) → ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐵 [,] 𝐷 ) ) |
| 5 | sslin | ⊢ ( ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐵 [,] 𝐷 ) → ( ( 𝐴 (,) 𝐵 ) ∩ ( 𝐶 (,) 𝐷 ) ) ⊆ ( ( 𝐴 (,) 𝐵 ) ∩ ( 𝐵 [,] 𝐷 ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) ) ∧ 𝐵 ≤ 𝐶 ) → ( ( 𝐴 (,) 𝐵 ) ∩ ( 𝐶 (,) 𝐷 ) ) ⊆ ( ( 𝐴 (,) 𝐵 ) ∩ ( 𝐵 [,] 𝐷 ) ) ) |
| 7 | simplll | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) ) ∧ 𝐵 ≤ 𝐶 ) → 𝐴 ∈ ℝ* ) | |
| 8 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) ) ∧ 𝐵 ≤ 𝐶 ) → 𝐵 ∈ ℝ* ) | |
| 9 | simplrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) ) ∧ 𝐵 ≤ 𝐶 ) → 𝐷 ∈ ℝ* ) | |
| 10 | df-ioo | ⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) | |
| 11 | df-icc | ⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) | |
| 12 | xrlenlt | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐵 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐵 ) ) | |
| 13 | 10 11 12 | ixxdisj | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) → ( ( 𝐴 (,) 𝐵 ) ∩ ( 𝐵 [,] 𝐷 ) ) = ∅ ) |
| 14 | 7 8 9 13 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) ) ∧ 𝐵 ≤ 𝐶 ) → ( ( 𝐴 (,) 𝐵 ) ∩ ( 𝐵 [,] 𝐷 ) ) = ∅ ) |
| 15 | 6 14 | sseqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) ) ∧ 𝐵 ≤ 𝐶 ) → ( ( 𝐴 (,) 𝐵 ) ∩ ( 𝐶 (,) 𝐷 ) ) ⊆ ∅ ) |
| 16 | ss0 | ⊢ ( ( ( 𝐴 (,) 𝐵 ) ∩ ( 𝐶 (,) 𝐷 ) ) ⊆ ∅ → ( ( 𝐴 (,) 𝐵 ) ∩ ( 𝐶 (,) 𝐷 ) ) = ∅ ) | |
| 17 | 15 16 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) ) ∧ 𝐵 ≤ 𝐶 ) → ( ( 𝐴 (,) 𝐵 ) ∩ ( 𝐶 (,) 𝐷 ) ) = ∅ ) |