This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The nonnegative difference of integers is a nonnegative integer. (Generalization of nn0sub .) (Contributed by NM, 14-Jul-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | znn0sub | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 2 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 3 | subge0 | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 0 ≤ ( 𝑁 − 𝑀 ) ↔ 𝑀 ≤ 𝑁 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 0 ≤ ( 𝑁 − 𝑀 ) ↔ 𝑀 ≤ 𝑁 ) ) |
| 5 | zsubcl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 − 𝑀 ) ∈ ℤ ) | |
| 6 | 5 | biantrurd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 0 ≤ ( 𝑁 − 𝑀 ) ↔ ( ( 𝑁 − 𝑀 ) ∈ ℤ ∧ 0 ≤ ( 𝑁 − 𝑀 ) ) ) ) |
| 7 | 4 6 | bitr3d | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ≤ 𝑁 ↔ ( ( 𝑁 − 𝑀 ) ∈ ℤ ∧ 0 ≤ ( 𝑁 − 𝑀 ) ) ) ) |
| 8 | 7 | ancoms | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ≤ 𝑁 ↔ ( ( 𝑁 − 𝑀 ) ∈ ℤ ∧ 0 ≤ ( 𝑁 − 𝑀 ) ) ) ) |
| 9 | elnn0z | ⊢ ( ( 𝑁 − 𝑀 ) ∈ ℕ0 ↔ ( ( 𝑁 − 𝑀 ) ∈ ℤ ∧ 0 ≤ ( 𝑁 − 𝑀 ) ) ) | |
| 10 | 8 9 | bitr4di | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ0 ) ) |