This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparison of the limits of two sequences. (Contributed by Mario Carneiro, 10-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimle.1 | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) | |
| rlimle.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐷 ) | ||
| rlimle.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 ) | ||
| rlimle.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| rlimle.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) | ||
| rlimle.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) | ||
| Assertion | rlimle | ⊢ ( 𝜑 → 𝐷 ≤ 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimle.1 | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) | |
| 2 | rlimle.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐷 ) | |
| 3 | rlimle.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 ) | |
| 4 | rlimle.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 5 | rlimle.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) | |
| 6 | rlimle.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) | |
| 7 | 5 4 3 2 | rlimsub | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 − 𝐵 ) ) ⇝𝑟 ( 𝐸 − 𝐷 ) ) |
| 8 | 5 4 | resubcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 − 𝐵 ) ∈ ℝ ) |
| 9 | 5 4 | subge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ ( 𝐶 − 𝐵 ) ↔ 𝐵 ≤ 𝐶 ) ) |
| 10 | 6 9 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( 𝐶 − 𝐵 ) ) |
| 11 | 1 7 8 10 | rlimge0 | ⊢ ( 𝜑 → 0 ≤ ( 𝐸 − 𝐷 ) ) |
| 12 | 1 3 5 | rlimrecl | ⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 13 | 1 2 4 | rlimrecl | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 14 | 12 13 | subge0d | ⊢ ( 𝜑 → ( 0 ≤ ( 𝐸 − 𝐷 ) ↔ 𝐷 ≤ 𝐸 ) ) |
| 15 | 11 14 | mpbid | ⊢ ( 𝜑 → 𝐷 ≤ 𝐸 ) |