This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | icopnfsup | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞ ) → sup ( ( 𝐴 [,) +∞ ) , ℝ* , < ) = +∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞ ) → 𝐴 ∈ ℝ* ) | |
| 2 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 3 | 2 | a1i | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞ ) → +∞ ∈ ℝ* ) |
| 4 | nltpnft | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 = +∞ ↔ ¬ 𝐴 < +∞ ) ) | |
| 5 | 4 | necon2abid | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 < +∞ ↔ 𝐴 ≠ +∞ ) ) |
| 6 | 5 | biimpar | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞ ) → 𝐴 < +∞ ) |
| 7 | lbico1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 < +∞ ) → 𝐴 ∈ ( 𝐴 [,) +∞ ) ) | |
| 8 | 1 3 6 7 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞ ) → 𝐴 ∈ ( 𝐴 [,) +∞ ) ) |
| 9 | 8 | ne0d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞ ) → ( 𝐴 [,) +∞ ) ≠ ∅ ) |
| 10 | df-ico | ⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) | |
| 11 | idd | ⊢ ( ( 𝑤 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑤 < +∞ → 𝑤 < +∞ ) ) | |
| 12 | xrltle | ⊢ ( ( 𝑤 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑤 < +∞ → 𝑤 ≤ +∞ ) ) | |
| 13 | xrltle | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 < 𝑤 → 𝐴 ≤ 𝑤 ) ) | |
| 14 | idd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 ≤ 𝑤 → 𝐴 ≤ 𝑤 ) ) | |
| 15 | 10 11 12 13 14 | ixxub | ⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝐴 [,) +∞ ) ≠ ∅ ) → sup ( ( 𝐴 [,) +∞ ) , ℝ* , < ) = +∞ ) |
| 16 | 1 3 9 15 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞ ) → sup ( ( 𝐴 [,) +∞ ) , ℝ* , < ) = +∞ ) |