This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conjoin the statements of dvfsumrlim and dvfsumrlim2 . (This is useful as a target for lemmas, because the hypotheses to this theorem are complex, and we don't want to repeat ourselves.) (Contributed by Mario Carneiro, 18-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvfsum.s | ⊢ 𝑆 = ( 𝑇 (,) +∞ ) | |
| dvfsum.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| dvfsum.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| dvfsum.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
| dvfsum.md | ⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) | ||
| dvfsum.t | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | ||
| dvfsum.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | ||
| dvfsum.b1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) | ||
| dvfsum.b2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) | ||
| dvfsum.b3 | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) | ||
| dvfsum.c | ⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) | ||
| dvfsumrlim.l | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ) ) → 𝐶 ≤ 𝐵 ) | ||
| dvfsumrlim.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝑆 ↦ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) | ||
| dvfsumrlim.k | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ⇝𝑟 0 ) | ||
| dvfsumrlim3.1 | ⊢ ( 𝑥 = 𝑋 → 𝐵 = 𝐸 ) | ||
| Assertion | dvfsumrlim3 | ⊢ ( 𝜑 → ( 𝐺 : 𝑆 ⟶ ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ( ( 𝐺 ⇝𝑟 𝐿 ∧ 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − 𝐿 ) ) ≤ 𝐸 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfsum.s | ⊢ 𝑆 = ( 𝑇 (,) +∞ ) | |
| 2 | dvfsum.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | dvfsum.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | dvfsum.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| 5 | dvfsum.md | ⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) | |
| 6 | dvfsum.t | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | |
| 7 | dvfsum.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | |
| 8 | dvfsum.b1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) | |
| 9 | dvfsum.b2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) | |
| 10 | dvfsum.b3 | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) | |
| 11 | dvfsum.c | ⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) | |
| 12 | dvfsumrlim.l | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ) ) → 𝐶 ≤ 𝐵 ) | |
| 13 | dvfsumrlim.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝑆 ↦ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) | |
| 14 | dvfsumrlim.k | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ⇝𝑟 0 ) | |
| 15 | dvfsumrlim3.1 | ⊢ ( 𝑥 = 𝑋 → 𝐵 = 𝐸 ) | |
| 16 | 1 2 3 4 5 6 7 8 9 10 11 13 | dvfsumrlimf | ⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℝ ) |
| 17 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | dvfsumrlim | ⊢ ( 𝜑 → 𝐺 ∈ dom ⇝𝑟 ) |
| 18 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) → 𝑀 ∈ ℤ ) |
| 19 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) → 𝐷 ∈ ℝ ) |
| 20 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) → 𝑀 ≤ ( 𝐷 + 1 ) ) |
| 21 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) → 𝑇 ∈ ℝ ) |
| 22 | 7 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) |
| 23 | 8 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) |
| 24 | 9 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
| 25 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) |
| 26 | 12 | 3adant1r | ⊢ ( ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ) ) → 𝐶 ≤ 𝐵 ) |
| 27 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) → ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ⇝𝑟 0 ) |
| 28 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) → 𝑋 ∈ 𝑆 ) | |
| 29 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) → 𝐷 ≤ 𝑋 ) | |
| 30 | 1 2 18 19 20 21 22 23 24 25 11 26 13 27 28 29 | dvfsumrlim2 | ⊢ ( ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝐺 ⇝𝑟 𝐿 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − 𝐿 ) ) ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 31 | 28 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝐺 ⇝𝑟 𝐿 ) → 𝑋 ∈ 𝑆 ) |
| 32 | nfcvd | ⊢ ( 𝑋 ∈ 𝑆 → Ⅎ 𝑥 𝐸 ) | |
| 33 | 32 15 | csbiegf | ⊢ ( 𝑋 ∈ 𝑆 → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 = 𝐸 ) |
| 34 | 31 33 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝐺 ⇝𝑟 𝐿 ) → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 = 𝐸 ) |
| 35 | 30 34 | breqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝐺 ⇝𝑟 𝐿 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − 𝐿 ) ) ≤ 𝐸 ) |
| 36 | 35 | exp42 | ⊢ ( 𝜑 → ( 𝐷 ≤ 𝑋 → ( 𝑋 ∈ 𝑆 → ( 𝐺 ⇝𝑟 𝐿 → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − 𝐿 ) ) ≤ 𝐸 ) ) ) ) |
| 37 | 36 | com24 | ⊢ ( 𝜑 → ( 𝐺 ⇝𝑟 𝐿 → ( 𝑋 ∈ 𝑆 → ( 𝐷 ≤ 𝑋 → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − 𝐿 ) ) ≤ 𝐸 ) ) ) ) |
| 38 | 37 | 3impd | ⊢ ( 𝜑 → ( ( 𝐺 ⇝𝑟 𝐿 ∧ 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − 𝐿 ) ) ≤ 𝐸 ) ) |
| 39 | 16 17 38 | 3jca | ⊢ ( 𝜑 → ( 𝐺 : 𝑆 ⟶ ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ( ( 𝐺 ⇝𝑟 𝐿 ∧ 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − 𝐿 ) ) ≤ 𝐸 ) ) ) |