This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a positive integer divides a prime power, it is a prime power with a smaller exponent. (Contributed by AV, 25-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsprmpweqle | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ0 ( 𝑛 ≤ 𝑁 ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsprmpweq | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) | |
| 2 | 1 | imp | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ) |
| 3 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 4 | 3 | 3ad2ant3 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
| 5 | 4 | adantr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → 𝑁 ∈ ℝ ) |
| 6 | nn0re | ⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℝ ) | |
| 7 | 5 6 | anim12ci | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 8 | 7 | adantr | ⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) → ( 𝑛 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 9 | lelttric | ⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑛 ≤ 𝑁 ∨ 𝑁 < 𝑛 ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) → ( 𝑛 ≤ 𝑁 ∨ 𝑁 < 𝑛 ) ) |
| 11 | breq1 | ⊢ ( 𝐴 = ( 𝑃 ↑ 𝑛 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ↔ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑃 ↑ 𝑁 ) ) ) | |
| 12 | 11 | adantl | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ↔ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑃 ↑ 𝑁 ) ) ) |
| 13 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 14 | 13 | nnnn0d | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ0 ) |
| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑃 ∈ ℕ0 ) |
| 16 | 15 | adantr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑃 ∈ ℕ0 ) |
| 17 | simpr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) | |
| 18 | 16 17 | nn0expcld | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑛 ) ∈ ℕ0 ) |
| 19 | 18 | nn0zd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑛 ) ∈ ℤ ) |
| 20 | 13 | nncnd | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℂ ) |
| 21 | 20 | 3ad2ant1 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑃 ∈ ℂ ) |
| 22 | 21 | adantr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑃 ∈ ℂ ) |
| 23 | 13 | nnne0d | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ≠ 0 ) |
| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑃 ≠ 0 ) |
| 25 | 24 | adantr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑃 ≠ 0 ) |
| 26 | nn0z | ⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) | |
| 27 | 26 | adantl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℤ ) |
| 28 | 22 25 27 | expne0d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑛 ) ≠ 0 ) |
| 29 | simp3 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) | |
| 30 | 29 | adantr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
| 31 | 16 30 | nn0expcld | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑁 ) ∈ ℕ0 ) |
| 32 | 31 | nn0zd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑁 ) ∈ ℤ ) |
| 33 | dvdsval2 | ⊢ ( ( ( 𝑃 ↑ 𝑛 ) ∈ ℤ ∧ ( 𝑃 ↑ 𝑛 ) ≠ 0 ∧ ( 𝑃 ↑ 𝑁 ) ∈ ℤ ) → ( ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑃 ↑ 𝑁 ) ↔ ( ( 𝑃 ↑ 𝑁 ) / ( 𝑃 ↑ 𝑛 ) ) ∈ ℤ ) ) | |
| 34 | 19 28 32 33 | syl3anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑃 ↑ 𝑁 ) ↔ ( ( 𝑃 ↑ 𝑁 ) / ( 𝑃 ↑ 𝑛 ) ) ∈ ℤ ) ) |
| 35 | 20 23 | jca | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ) |
| 36 | 35 | 3ad2ant1 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ) |
| 37 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 38 | 37 | 3ad2ant3 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
| 39 | 38 26 | anim12i | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) |
| 40 | expsub | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( 𝑃 ↑ ( 𝑁 − 𝑛 ) ) = ( ( 𝑃 ↑ 𝑁 ) / ( 𝑃 ↑ 𝑛 ) ) ) | |
| 41 | 40 | eqcomd | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( ( 𝑃 ↑ 𝑁 ) / ( 𝑃 ↑ 𝑛 ) ) = ( 𝑃 ↑ ( 𝑁 − 𝑛 ) ) ) |
| 42 | 36 39 41 | syl2an2r | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑁 ) / ( 𝑃 ↑ 𝑛 ) ) = ( 𝑃 ↑ ( 𝑁 − 𝑛 ) ) ) |
| 43 | 42 | eleq1d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝑃 ↑ 𝑁 ) / ( 𝑃 ↑ 𝑛 ) ) ∈ ℤ ↔ ( 𝑃 ↑ ( 𝑁 − 𝑛 ) ) ∈ ℤ ) ) |
| 44 | 22 | adantr | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → 𝑃 ∈ ℂ ) |
| 45 | nn0cn | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) | |
| 46 | 45 | 3ad2ant3 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 47 | 46 | adantr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 48 | nn0cn | ⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℂ ) | |
| 49 | 48 | adantl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℂ ) |
| 50 | 47 49 | subcld | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 − 𝑛 ) ∈ ℂ ) |
| 51 | 50 | adantr | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ( 𝑁 − 𝑛 ) ∈ ℂ ) |
| 52 | 46 48 | anim12i | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ) |
| 53 | 52 | adantr | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ( 𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ) |
| 54 | negsubdi2 | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → - ( 𝑁 − 𝑛 ) = ( 𝑛 − 𝑁 ) ) | |
| 55 | 53 54 | syl | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → - ( 𝑁 − 𝑛 ) = ( 𝑛 − 𝑁 ) ) |
| 56 | 29 | anim1ci | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) |
| 57 | ltsubnn0 | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 < 𝑛 → ( 𝑛 − 𝑁 ) ∈ ℕ0 ) ) | |
| 58 | 56 57 | syl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 < 𝑛 → ( 𝑛 − 𝑁 ) ∈ ℕ0 ) ) |
| 59 | 58 | imp | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ( 𝑛 − 𝑁 ) ∈ ℕ0 ) |
| 60 | 55 59 | eqeltrd | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → - ( 𝑁 − 𝑛 ) ∈ ℕ0 ) |
| 61 | expneg2 | ⊢ ( ( 𝑃 ∈ ℂ ∧ ( 𝑁 − 𝑛 ) ∈ ℂ ∧ - ( 𝑁 − 𝑛 ) ∈ ℕ0 ) → ( 𝑃 ↑ ( 𝑁 − 𝑛 ) ) = ( 1 / ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ) ) | |
| 62 | 44 51 60 61 | syl3anc | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ( 𝑃 ↑ ( 𝑁 − 𝑛 ) ) = ( 1 / ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ) ) |
| 63 | 62 | eleq1d | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ( ( 𝑃 ↑ ( 𝑁 − 𝑛 ) ) ∈ ℤ ↔ ( 1 / ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ) ∈ ℤ ) ) |
| 64 | 13 | nnred | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℝ ) |
| 65 | 64 | 3ad2ant1 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑃 ∈ ℝ ) |
| 66 | 65 | adantr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑃 ∈ ℝ ) |
| 67 | 66 | adantr | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → 𝑃 ∈ ℝ ) |
| 68 | 67 59 | reexpcld | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ( 𝑃 ↑ ( 𝑛 − 𝑁 ) ) ∈ ℝ ) |
| 69 | znnsub | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑁 < 𝑛 ↔ ( 𝑛 − 𝑁 ) ∈ ℕ ) ) | |
| 70 | 39 69 | syl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 < 𝑛 ↔ ( 𝑛 − 𝑁 ) ∈ ℕ ) ) |
| 71 | 70 | biimpa | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ( 𝑛 − 𝑁 ) ∈ ℕ ) |
| 72 | prmgt1 | ⊢ ( 𝑃 ∈ ℙ → 1 < 𝑃 ) | |
| 73 | 72 | 3ad2ant1 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 1 < 𝑃 ) |
| 74 | 73 | adantr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 1 < 𝑃 ) |
| 75 | 74 | adantr | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → 1 < 𝑃 ) |
| 76 | expgt1 | ⊢ ( ( 𝑃 ∈ ℝ ∧ ( 𝑛 − 𝑁 ) ∈ ℕ ∧ 1 < 𝑃 ) → 1 < ( 𝑃 ↑ ( 𝑛 − 𝑁 ) ) ) | |
| 77 | 67 71 75 76 | syl3anc | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → 1 < ( 𝑃 ↑ ( 𝑛 − 𝑁 ) ) ) |
| 78 | 68 77 | jca | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ( ( 𝑃 ↑ ( 𝑛 − 𝑁 ) ) ∈ ℝ ∧ 1 < ( 𝑃 ↑ ( 𝑛 − 𝑁 ) ) ) ) |
| 79 | oveq2 | ⊢ ( - ( 𝑁 − 𝑛 ) = ( 𝑛 − 𝑁 ) → ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) = ( 𝑃 ↑ ( 𝑛 − 𝑁 ) ) ) | |
| 80 | 79 | eleq1d | ⊢ ( - ( 𝑁 − 𝑛 ) = ( 𝑛 − 𝑁 ) → ( ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ∈ ℝ ↔ ( 𝑃 ↑ ( 𝑛 − 𝑁 ) ) ∈ ℝ ) ) |
| 81 | 79 | breq2d | ⊢ ( - ( 𝑁 − 𝑛 ) = ( 𝑛 − 𝑁 ) → ( 1 < ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ↔ 1 < ( 𝑃 ↑ ( 𝑛 − 𝑁 ) ) ) ) |
| 82 | 80 81 | anbi12d | ⊢ ( - ( 𝑁 − 𝑛 ) = ( 𝑛 − 𝑁 ) → ( ( ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ∈ ℝ ∧ 1 < ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ) ↔ ( ( 𝑃 ↑ ( 𝑛 − 𝑁 ) ) ∈ ℝ ∧ 1 < ( 𝑃 ↑ ( 𝑛 − 𝑁 ) ) ) ) ) |
| 83 | 78 82 | syl5ibrcom | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ( - ( 𝑁 − 𝑛 ) = ( 𝑛 − 𝑁 ) → ( ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ∈ ℝ ∧ 1 < ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ) ) ) |
| 84 | 55 83 | mpd | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ( ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ∈ ℝ ∧ 1 < ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ) ) |
| 85 | recnz | ⊢ ( ( ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ∈ ℝ ∧ 1 < ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ) → ¬ ( 1 / ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ) ∈ ℤ ) | |
| 86 | 84 85 | syl | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ¬ ( 1 / ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ) ∈ ℤ ) |
| 87 | 86 | pm2.21d | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ( ( 1 / ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ) ∈ ℤ → 𝑛 ≤ 𝑁 ) ) |
| 88 | 63 87 | sylbid | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ( ( 𝑃 ↑ ( 𝑁 − 𝑛 ) ) ∈ ℤ → 𝑛 ≤ 𝑁 ) ) |
| 89 | 88 | ex | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 < 𝑛 → ( ( 𝑃 ↑ ( 𝑁 − 𝑛 ) ) ∈ ℤ → 𝑛 ≤ 𝑁 ) ) ) |
| 90 | 89 | com23 | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑃 ↑ ( 𝑁 − 𝑛 ) ) ∈ ℤ → ( 𝑁 < 𝑛 → 𝑛 ≤ 𝑁 ) ) ) |
| 91 | 43 90 | sylbid | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝑃 ↑ 𝑁 ) / ( 𝑃 ↑ 𝑛 ) ) ∈ ℤ → ( 𝑁 < 𝑛 → 𝑛 ≤ 𝑁 ) ) ) |
| 92 | 34 91 | sylbid | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑃 ↑ 𝑁 ) → ( 𝑁 < 𝑛 → 𝑛 ≤ 𝑁 ) ) ) |
| 93 | 92 | adantr | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) → ( ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑃 ↑ 𝑁 ) → ( 𝑁 < 𝑛 → 𝑛 ≤ 𝑁 ) ) ) |
| 94 | 12 93 | sylbid | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ( 𝑁 < 𝑛 → 𝑛 ≤ 𝑁 ) ) ) |
| 95 | 94 | ex | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 = ( 𝑃 ↑ 𝑛 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ( 𝑁 < 𝑛 → 𝑛 ≤ 𝑁 ) ) ) ) |
| 96 | 95 | com23 | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ( 𝐴 = ( 𝑃 ↑ 𝑛 ) → ( 𝑁 < 𝑛 → 𝑛 ≤ 𝑁 ) ) ) ) |
| 97 | 96 | ex | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑛 ∈ ℕ0 → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ( 𝐴 = ( 𝑃 ↑ 𝑛 ) → ( 𝑁 < 𝑛 → 𝑛 ≤ 𝑁 ) ) ) ) ) |
| 98 | 97 | com23 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ( 𝑛 ∈ ℕ0 → ( 𝐴 = ( 𝑃 ↑ 𝑛 ) → ( 𝑁 < 𝑛 → 𝑛 ≤ 𝑁 ) ) ) ) ) |
| 99 | 98 | imp41 | ⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) → ( 𝑁 < 𝑛 → 𝑛 ≤ 𝑁 ) ) |
| 100 | 99 | com12 | ⊢ ( 𝑁 < 𝑛 → ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) → 𝑛 ≤ 𝑁 ) ) |
| 101 | 100 | jao1i | ⊢ ( ( 𝑛 ≤ 𝑁 ∨ 𝑁 < 𝑛 ) → ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) → 𝑛 ≤ 𝑁 ) ) |
| 102 | 10 101 | mpcom | ⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) → 𝑛 ≤ 𝑁 ) |
| 103 | simpr | ⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) → 𝐴 = ( 𝑃 ↑ 𝑛 ) ) | |
| 104 | 102 103 | jca | ⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) → ( 𝑛 ≤ 𝑁 ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
| 105 | 104 | ex | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 = ( 𝑃 ↑ 𝑛 ) → ( 𝑛 ≤ 𝑁 ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) ) |
| 106 | 105 | reximdva | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ( ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) → ∃ 𝑛 ∈ ℕ0 ( 𝑛 ≤ 𝑁 ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) ) |
| 107 | 2 106 | mpd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ∃ 𝑛 ∈ ℕ0 ( 𝑛 ≤ 𝑁 ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
| 108 | 107 | ex | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ0 ( 𝑛 ≤ 𝑁 ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) ) |