This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of a number greater than 1 is not an integer. (Contributed by NM, 3-May-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recnz | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ¬ ( 1 / 𝐴 ) ∈ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recgt1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 0 < ( 1 / 𝐴 ) ∧ ( 1 / 𝐴 ) < 1 ) ) | |
| 2 | 1 | simprd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 1 / 𝐴 ) < 1 ) |
| 3 | 1 | simpld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 0 < ( 1 / 𝐴 ) ) |
| 4 | zgt0ge1 | ⊢ ( ( 1 / 𝐴 ) ∈ ℤ → ( 0 < ( 1 / 𝐴 ) ↔ 1 ≤ ( 1 / 𝐴 ) ) ) | |
| 5 | 3 4 | syl5ibcom | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( ( 1 / 𝐴 ) ∈ ℤ → 1 ≤ ( 1 / 𝐴 ) ) ) |
| 6 | 1re | ⊢ 1 ∈ ℝ | |
| 7 | 0lt1 | ⊢ 0 < 1 | |
| 8 | 0re | ⊢ 0 ∈ ℝ | |
| 9 | lttr | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 0 < 1 ∧ 1 < 𝐴 ) → 0 < 𝐴 ) ) | |
| 10 | 8 6 9 | mp3an12 | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 < 1 ∧ 1 < 𝐴 ) → 0 < 𝐴 ) ) |
| 11 | 7 10 | mpani | ⊢ ( 𝐴 ∈ ℝ → ( 1 < 𝐴 → 0 < 𝐴 ) ) |
| 12 | 11 | imdistani | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 13 | gt0ne0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 𝐴 ≠ 0 ) |
| 15 | rereccl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℝ ) | |
| 16 | 14 15 | syldan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
| 17 | lenlt | ⊢ ( ( 1 ∈ ℝ ∧ ( 1 / 𝐴 ) ∈ ℝ ) → ( 1 ≤ ( 1 / 𝐴 ) ↔ ¬ ( 1 / 𝐴 ) < 1 ) ) | |
| 18 | 6 16 17 | sylancr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 1 ≤ ( 1 / 𝐴 ) ↔ ¬ ( 1 / 𝐴 ) < 1 ) ) |
| 19 | 5 18 | sylibd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( ( 1 / 𝐴 ) ∈ ℤ → ¬ ( 1 / 𝐴 ) < 1 ) ) |
| 20 | 2 19 | mt2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ¬ ( 1 / 𝐴 ) ∈ ℤ ) |