This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the difference of two squares is a power of a prime, the prime divides twice the second squared number. (Contributed by AV, 13-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difsqpwdvds | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0cn | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ ) | |
| 2 | nn0cn | ⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℂ ) | |
| 3 | 1 2 | anim12i | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 5 | subsq | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
| 8 | 7 | eqeq2d | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ↔ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) ) |
| 9 | simprl | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → 𝐶 ∈ ℙ ) | |
| 10 | nn0z | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) | |
| 11 | nn0z | ⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ ) | |
| 12 | 10 11 | anim12i | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
| 13 | zaddcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 + 𝐵 ) ∈ ℤ ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 + 𝐵 ) ∈ ℤ ) |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐴 + 𝐵 ) ∈ ℤ ) |
| 16 | nn0re | ⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → 𝐵 ∈ ℝ ) |
| 18 | 1red | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → 1 ∈ ℝ ) | |
| 19 | nn0re | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) | |
| 20 | 19 | adantr | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
| 21 | 17 18 20 | ltaddsub2d | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐵 + 1 ) < 𝐴 ↔ 1 < ( 𝐴 − 𝐵 ) ) ) |
| 22 | simpr | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → 𝐵 ∈ ℕ0 ) | |
| 23 | 20 22 18 | 3jca | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 1 ∈ ℝ ) ) |
| 24 | difgtsumgt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 1 ∈ ℝ ) → ( 1 < ( 𝐴 − 𝐵 ) → 1 < ( 𝐴 + 𝐵 ) ) ) | |
| 25 | 23 24 | syl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 1 < ( 𝐴 − 𝐵 ) → 1 < ( 𝐴 + 𝐵 ) ) ) |
| 26 | 21 25 | sylbid | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐵 + 1 ) < 𝐴 → 1 < ( 𝐴 + 𝐵 ) ) ) |
| 27 | 26 | 3impia | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → 1 < ( 𝐴 + 𝐵 ) ) |
| 28 | eluz2b1 | ⊢ ( ( 𝐴 + 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ 1 < ( 𝐴 + 𝐵 ) ) ) | |
| 29 | 15 27 28 | sylanbrc | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐴 + 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 30 | 29 | adantr | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( 𝐴 + 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 31 | simprr | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → 𝐷 ∈ ℕ0 ) | |
| 32 | 9 30 31 | 3jca | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( 𝐶 ∈ ℙ ∧ ( 𝐴 + 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐷 ∈ ℕ0 ) ) |
| 33 | 32 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( 𝐶 ∈ ℙ ∧ ( 𝐴 + 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐷 ∈ ℕ0 ) ) |
| 34 | zsubcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) | |
| 35 | 13 34 | jca | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ) |
| 36 | 12 35 | syl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ) |
| 37 | 36 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ) |
| 38 | dvdsmul1 | ⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) → ( 𝐴 + 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) | |
| 39 | 37 38 | syl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐴 + 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
| 40 | 39 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( 𝐴 + 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
| 41 | breq2 | ⊢ ( ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) → ( ( 𝐴 + 𝐵 ) ∥ ( 𝐶 ↑ 𝐷 ) ↔ ( 𝐴 + 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) ) | |
| 42 | 41 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( ( 𝐴 + 𝐵 ) ∥ ( 𝐶 ↑ 𝐷 ) ↔ ( 𝐴 + 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) ) |
| 43 | 40 42 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( 𝐴 + 𝐵 ) ∥ ( 𝐶 ↑ 𝐷 ) ) |
| 44 | dvdsprmpweqnn | ⊢ ( ( 𝐶 ∈ ℙ ∧ ( 𝐴 + 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐷 ∈ ℕ0 ) → ( ( 𝐴 + 𝐵 ) ∥ ( 𝐶 ↑ 𝐷 ) → ∃ 𝑚 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) ) ) | |
| 45 | 33 43 44 | sylc | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ∃ 𝑚 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) ) |
| 46 | prmz | ⊢ ( 𝐶 ∈ ℙ → 𝐶 ∈ ℤ ) | |
| 47 | iddvdsexp | ⊢ ( ( 𝐶 ∈ ℤ ∧ 𝑚 ∈ ℕ ) → 𝐶 ∥ ( 𝐶 ↑ 𝑚 ) ) | |
| 48 | 46 47 | sylan | ⊢ ( ( 𝐶 ∈ ℙ ∧ 𝑚 ∈ ℕ ) → 𝐶 ∥ ( 𝐶 ↑ 𝑚 ) ) |
| 49 | breq2 | ⊢ ( ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) → ( 𝐶 ∥ ( 𝐴 + 𝐵 ) ↔ 𝐶 ∥ ( 𝐶 ↑ 𝑚 ) ) ) | |
| 50 | 48 49 | syl5ibrcom | ⊢ ( ( 𝐶 ∈ ℙ ∧ 𝑚 ∈ ℕ ) → ( ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) → 𝐶 ∥ ( 𝐴 + 𝐵 ) ) ) |
| 51 | 50 | rexlimdva | ⊢ ( 𝐶 ∈ ℙ → ( ∃ 𝑚 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) → 𝐶 ∥ ( 𝐴 + 𝐵 ) ) ) |
| 52 | 51 | adantr | ⊢ ( ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) → ( ∃ 𝑚 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) → 𝐶 ∥ ( 𝐴 + 𝐵 ) ) ) |
| 53 | 52 | adantl | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ∃ 𝑚 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) → 𝐶 ∥ ( 𝐴 + 𝐵 ) ) ) |
| 54 | 53 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( ∃ 𝑚 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) → 𝐶 ∥ ( 𝐴 + 𝐵 ) ) ) |
| 55 | 12 34 | syl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) |
| 56 | 55 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) |
| 57 | 21 | biimp3a | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → 1 < ( 𝐴 − 𝐵 ) ) |
| 58 | eluz2b1 | ⊢ ( ( 𝐴 − 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( 𝐴 − 𝐵 ) ∈ ℤ ∧ 1 < ( 𝐴 − 𝐵 ) ) ) | |
| 59 | 56 57 58 | sylanbrc | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐴 − 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 60 | 59 | adantr | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( 𝐴 − 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 61 | 9 60 31 | 3jca | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( 𝐶 ∈ ℙ ∧ ( 𝐴 − 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐷 ∈ ℕ0 ) ) |
| 62 | 61 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( 𝐶 ∈ ℙ ∧ ( 𝐴 − 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐷 ∈ ℕ0 ) ) |
| 63 | dvdsmul2 | ⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) | |
| 64 | 37 63 | syl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐴 − 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
| 65 | 64 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( 𝐴 − 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
| 66 | breq2 | ⊢ ( ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) → ( ( 𝐴 − 𝐵 ) ∥ ( 𝐶 ↑ 𝐷 ) ↔ ( 𝐴 − 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) ) | |
| 67 | 66 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( ( 𝐴 − 𝐵 ) ∥ ( 𝐶 ↑ 𝐷 ) ↔ ( 𝐴 − 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) ) |
| 68 | 65 67 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( 𝐴 − 𝐵 ) ∥ ( 𝐶 ↑ 𝐷 ) ) |
| 69 | dvdsprmpweqnn | ⊢ ( ( 𝐶 ∈ ℙ ∧ ( 𝐴 − 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐷 ∈ ℕ0 ) → ( ( 𝐴 − 𝐵 ) ∥ ( 𝐶 ↑ 𝐷 ) → ∃ 𝑛 ∈ ℕ ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) ) ) | |
| 70 | 62 68 69 | sylc | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) ) |
| 71 | iddvdsexp | ⊢ ( ( 𝐶 ∈ ℤ ∧ 𝑛 ∈ ℕ ) → 𝐶 ∥ ( 𝐶 ↑ 𝑛 ) ) | |
| 72 | 46 71 | sylan | ⊢ ( ( 𝐶 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → 𝐶 ∥ ( 𝐶 ↑ 𝑛 ) ) |
| 73 | breq2 | ⊢ ( ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) → ( 𝐶 ∥ ( 𝐴 − 𝐵 ) ↔ 𝐶 ∥ ( 𝐶 ↑ 𝑛 ) ) ) | |
| 74 | 72 73 | syl5ibrcom | ⊢ ( ( 𝐶 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) → 𝐶 ∥ ( 𝐴 − 𝐵 ) ) ) |
| 75 | 74 | rexlimdva | ⊢ ( 𝐶 ∈ ℙ → ( ∃ 𝑛 ∈ ℕ ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) → 𝐶 ∥ ( 𝐴 − 𝐵 ) ) ) |
| 76 | 75 | adantr | ⊢ ( ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) → ( ∃ 𝑛 ∈ ℕ ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) → 𝐶 ∥ ( 𝐴 − 𝐵 ) ) ) |
| 77 | 76 | adantl | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ∃ 𝑛 ∈ ℕ ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) → 𝐶 ∥ ( 𝐴 − 𝐵 ) ) ) |
| 78 | 77 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( ∃ 𝑛 ∈ ℕ ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) → 𝐶 ∥ ( 𝐴 − 𝐵 ) ) ) |
| 79 | 46 | adantr | ⊢ ( ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) → 𝐶 ∈ ℤ ) |
| 80 | 37 79 | anim12ci | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( 𝐶 ∈ ℤ ∧ ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ) ) |
| 81 | 3anass | ⊢ ( ( 𝐶 ∈ ℤ ∧ ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ↔ ( 𝐶 ∈ ℤ ∧ ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ) ) | |
| 82 | 80 81 | sylibr | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( 𝐶 ∈ ℤ ∧ ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ) |
| 83 | dvds2sub | ⊢ ( ( 𝐶 ∈ ℤ ∧ ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) → ( ( 𝐶 ∥ ( 𝐴 + 𝐵 ) ∧ 𝐶 ∥ ( 𝐴 − 𝐵 ) ) → 𝐶 ∥ ( ( 𝐴 + 𝐵 ) − ( 𝐴 − 𝐵 ) ) ) ) | |
| 84 | 82 83 | syl | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ( 𝐶 ∥ ( 𝐴 + 𝐵 ) ∧ 𝐶 ∥ ( 𝐴 − 𝐵 ) ) → 𝐶 ∥ ( ( 𝐴 + 𝐵 ) − ( 𝐴 − 𝐵 ) ) ) ) |
| 85 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → 𝐴 ∈ ℂ ) |
| 86 | 2 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → 𝐵 ∈ ℂ ) |
| 87 | 85 86 86 | pnncand | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( ( 𝐴 + 𝐵 ) − ( 𝐴 − 𝐵 ) ) = ( 𝐵 + 𝐵 ) ) |
| 88 | 2 | 2timesd | ⊢ ( 𝐵 ∈ ℕ0 → ( 2 · 𝐵 ) = ( 𝐵 + 𝐵 ) ) |
| 89 | 88 | eqcomd | ⊢ ( 𝐵 ∈ ℕ0 → ( 𝐵 + 𝐵 ) = ( 2 · 𝐵 ) ) |
| 90 | 89 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐵 + 𝐵 ) = ( 2 · 𝐵 ) ) |
| 91 | 87 90 | eqtrd | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( ( 𝐴 + 𝐵 ) − ( 𝐴 − 𝐵 ) ) = ( 2 · 𝐵 ) ) |
| 92 | 91 | breq2d | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐶 ∥ ( ( 𝐴 + 𝐵 ) − ( 𝐴 − 𝐵 ) ) ↔ 𝐶 ∥ ( 2 · 𝐵 ) ) ) |
| 93 | 92 | biimpd | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐶 ∥ ( ( 𝐴 + 𝐵 ) − ( 𝐴 − 𝐵 ) ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) |
| 94 | 93 | adantr | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( 𝐶 ∥ ( ( 𝐴 + 𝐵 ) − ( 𝐴 − 𝐵 ) ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) |
| 95 | 84 94 | syld | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ( 𝐶 ∥ ( 𝐴 + 𝐵 ) ∧ 𝐶 ∥ ( 𝐴 − 𝐵 ) ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) |
| 96 | 95 | expcomd | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( 𝐶 ∥ ( 𝐴 − 𝐵 ) → ( 𝐶 ∥ ( 𝐴 + 𝐵 ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) ) |
| 97 | 96 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( 𝐶 ∥ ( 𝐴 − 𝐵 ) → ( 𝐶 ∥ ( 𝐴 + 𝐵 ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) ) |
| 98 | 78 97 | syld | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( ∃ 𝑛 ∈ ℕ ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) → ( 𝐶 ∥ ( 𝐴 + 𝐵 ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) ) |
| 99 | 70 98 | mpd | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( 𝐶 ∥ ( 𝐴 + 𝐵 ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) |
| 100 | 54 99 | syld | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( ∃ 𝑚 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) |
| 101 | 45 100 | mpd | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → 𝐶 ∥ ( 2 · 𝐵 ) ) |
| 102 | 101 | ex | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) |
| 103 | 8 102 | sylbid | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) |