This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a positive integer divides a prime power, it is a prime power with a smaller exponent. (Contributed by AV, 25-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsprmpweqle | |- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN0 ( n <_ N /\ A = ( P ^ n ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsprmpweq | |- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN0 A = ( P ^ n ) ) ) |
|
| 2 | 1 | imp | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN0 A = ( P ^ n ) ) |
| 3 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 4 | 3 | 3ad2ant3 | |- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> N e. RR ) |
| 5 | 4 | adantr | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> N e. RR ) |
| 6 | nn0re | |- ( n e. NN0 -> n e. RR ) |
|
| 7 | 5 6 | anim12ci | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) -> ( n e. RR /\ N e. RR ) ) |
| 8 | 7 | adantr | |- ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( n e. RR /\ N e. RR ) ) |
| 9 | lelttric | |- ( ( n e. RR /\ N e. RR ) -> ( n <_ N \/ N < n ) ) |
|
| 10 | 8 9 | syl | |- ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( n <_ N \/ N < n ) ) |
| 11 | breq1 | |- ( A = ( P ^ n ) -> ( A || ( P ^ N ) <-> ( P ^ n ) || ( P ^ N ) ) ) |
|
| 12 | 11 | adantl | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( A || ( P ^ N ) <-> ( P ^ n ) || ( P ^ N ) ) ) |
| 13 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 14 | 13 | nnnn0d | |- ( P e. Prime -> P e. NN0 ) |
| 15 | 14 | 3ad2ant1 | |- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> P e. NN0 ) |
| 16 | 15 | adantr | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> P e. NN0 ) |
| 17 | simpr | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> n e. NN0 ) |
|
| 18 | 16 17 | nn0expcld | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( P ^ n ) e. NN0 ) |
| 19 | 18 | nn0zd | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( P ^ n ) e. ZZ ) |
| 20 | 13 | nncnd | |- ( P e. Prime -> P e. CC ) |
| 21 | 20 | 3ad2ant1 | |- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> P e. CC ) |
| 22 | 21 | adantr | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> P e. CC ) |
| 23 | 13 | nnne0d | |- ( P e. Prime -> P =/= 0 ) |
| 24 | 23 | 3ad2ant1 | |- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> P =/= 0 ) |
| 25 | 24 | adantr | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> P =/= 0 ) |
| 26 | nn0z | |- ( n e. NN0 -> n e. ZZ ) |
|
| 27 | 26 | adantl | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> n e. ZZ ) |
| 28 | 22 25 27 | expne0d | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( P ^ n ) =/= 0 ) |
| 29 | simp3 | |- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> N e. NN0 ) |
|
| 30 | 29 | adantr | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> N e. NN0 ) |
| 31 | 16 30 | nn0expcld | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( P ^ N ) e. NN0 ) |
| 32 | 31 | nn0zd | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( P ^ N ) e. ZZ ) |
| 33 | dvdsval2 | |- ( ( ( P ^ n ) e. ZZ /\ ( P ^ n ) =/= 0 /\ ( P ^ N ) e. ZZ ) -> ( ( P ^ n ) || ( P ^ N ) <-> ( ( P ^ N ) / ( P ^ n ) ) e. ZZ ) ) |
|
| 34 | 19 28 32 33 | syl3anc | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( ( P ^ n ) || ( P ^ N ) <-> ( ( P ^ N ) / ( P ^ n ) ) e. ZZ ) ) |
| 35 | 20 23 | jca | |- ( P e. Prime -> ( P e. CC /\ P =/= 0 ) ) |
| 36 | 35 | 3ad2ant1 | |- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( P e. CC /\ P =/= 0 ) ) |
| 37 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 38 | 37 | 3ad2ant3 | |- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> N e. ZZ ) |
| 39 | 38 26 | anim12i | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( N e. ZZ /\ n e. ZZ ) ) |
| 40 | expsub | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( N e. ZZ /\ n e. ZZ ) ) -> ( P ^ ( N - n ) ) = ( ( P ^ N ) / ( P ^ n ) ) ) |
|
| 41 | 40 | eqcomd | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( N e. ZZ /\ n e. ZZ ) ) -> ( ( P ^ N ) / ( P ^ n ) ) = ( P ^ ( N - n ) ) ) |
| 42 | 36 39 41 | syl2an2r | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( ( P ^ N ) / ( P ^ n ) ) = ( P ^ ( N - n ) ) ) |
| 43 | 42 | eleq1d | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( ( ( P ^ N ) / ( P ^ n ) ) e. ZZ <-> ( P ^ ( N - n ) ) e. ZZ ) ) |
| 44 | 22 | adantr | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> P e. CC ) |
| 45 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 46 | 45 | 3ad2ant3 | |- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> N e. CC ) |
| 47 | 46 | adantr | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> N e. CC ) |
| 48 | nn0cn | |- ( n e. NN0 -> n e. CC ) |
|
| 49 | 48 | adantl | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> n e. CC ) |
| 50 | 47 49 | subcld | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( N - n ) e. CC ) |
| 51 | 50 | adantr | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( N - n ) e. CC ) |
| 52 | 46 48 | anim12i | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( N e. CC /\ n e. CC ) ) |
| 53 | 52 | adantr | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( N e. CC /\ n e. CC ) ) |
| 54 | negsubdi2 | |- ( ( N e. CC /\ n e. CC ) -> -u ( N - n ) = ( n - N ) ) |
|
| 55 | 53 54 | syl | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> -u ( N - n ) = ( n - N ) ) |
| 56 | 29 | anim1ci | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( n e. NN0 /\ N e. NN0 ) ) |
| 57 | ltsubnn0 | |- ( ( n e. NN0 /\ N e. NN0 ) -> ( N < n -> ( n - N ) e. NN0 ) ) |
|
| 58 | 56 57 | syl | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( N < n -> ( n - N ) e. NN0 ) ) |
| 59 | 58 | imp | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( n - N ) e. NN0 ) |
| 60 | 55 59 | eqeltrd | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> -u ( N - n ) e. NN0 ) |
| 61 | expneg2 | |- ( ( P e. CC /\ ( N - n ) e. CC /\ -u ( N - n ) e. NN0 ) -> ( P ^ ( N - n ) ) = ( 1 / ( P ^ -u ( N - n ) ) ) ) |
|
| 62 | 44 51 60 61 | syl3anc | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( P ^ ( N - n ) ) = ( 1 / ( P ^ -u ( N - n ) ) ) ) |
| 63 | 62 | eleq1d | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( ( P ^ ( N - n ) ) e. ZZ <-> ( 1 / ( P ^ -u ( N - n ) ) ) e. ZZ ) ) |
| 64 | 13 | nnred | |- ( P e. Prime -> P e. RR ) |
| 65 | 64 | 3ad2ant1 | |- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> P e. RR ) |
| 66 | 65 | adantr | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> P e. RR ) |
| 67 | 66 | adantr | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> P e. RR ) |
| 68 | 67 59 | reexpcld | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( P ^ ( n - N ) ) e. RR ) |
| 69 | znnsub | |- ( ( N e. ZZ /\ n e. ZZ ) -> ( N < n <-> ( n - N ) e. NN ) ) |
|
| 70 | 39 69 | syl | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( N < n <-> ( n - N ) e. NN ) ) |
| 71 | 70 | biimpa | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( n - N ) e. NN ) |
| 72 | prmgt1 | |- ( P e. Prime -> 1 < P ) |
|
| 73 | 72 | 3ad2ant1 | |- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> 1 < P ) |
| 74 | 73 | adantr | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> 1 < P ) |
| 75 | 74 | adantr | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> 1 < P ) |
| 76 | expgt1 | |- ( ( P e. RR /\ ( n - N ) e. NN /\ 1 < P ) -> 1 < ( P ^ ( n - N ) ) ) |
|
| 77 | 67 71 75 76 | syl3anc | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> 1 < ( P ^ ( n - N ) ) ) |
| 78 | 68 77 | jca | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( ( P ^ ( n - N ) ) e. RR /\ 1 < ( P ^ ( n - N ) ) ) ) |
| 79 | oveq2 | |- ( -u ( N - n ) = ( n - N ) -> ( P ^ -u ( N - n ) ) = ( P ^ ( n - N ) ) ) |
|
| 80 | 79 | eleq1d | |- ( -u ( N - n ) = ( n - N ) -> ( ( P ^ -u ( N - n ) ) e. RR <-> ( P ^ ( n - N ) ) e. RR ) ) |
| 81 | 79 | breq2d | |- ( -u ( N - n ) = ( n - N ) -> ( 1 < ( P ^ -u ( N - n ) ) <-> 1 < ( P ^ ( n - N ) ) ) ) |
| 82 | 80 81 | anbi12d | |- ( -u ( N - n ) = ( n - N ) -> ( ( ( P ^ -u ( N - n ) ) e. RR /\ 1 < ( P ^ -u ( N - n ) ) ) <-> ( ( P ^ ( n - N ) ) e. RR /\ 1 < ( P ^ ( n - N ) ) ) ) ) |
| 83 | 78 82 | syl5ibrcom | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( -u ( N - n ) = ( n - N ) -> ( ( P ^ -u ( N - n ) ) e. RR /\ 1 < ( P ^ -u ( N - n ) ) ) ) ) |
| 84 | 55 83 | mpd | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( ( P ^ -u ( N - n ) ) e. RR /\ 1 < ( P ^ -u ( N - n ) ) ) ) |
| 85 | recnz | |- ( ( ( P ^ -u ( N - n ) ) e. RR /\ 1 < ( P ^ -u ( N - n ) ) ) -> -. ( 1 / ( P ^ -u ( N - n ) ) ) e. ZZ ) |
|
| 86 | 84 85 | syl | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> -. ( 1 / ( P ^ -u ( N - n ) ) ) e. ZZ ) |
| 87 | 86 | pm2.21d | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( ( 1 / ( P ^ -u ( N - n ) ) ) e. ZZ -> n <_ N ) ) |
| 88 | 63 87 | sylbid | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( ( P ^ ( N - n ) ) e. ZZ -> n <_ N ) ) |
| 89 | 88 | ex | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( N < n -> ( ( P ^ ( N - n ) ) e. ZZ -> n <_ N ) ) ) |
| 90 | 89 | com23 | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( ( P ^ ( N - n ) ) e. ZZ -> ( N < n -> n <_ N ) ) ) |
| 91 | 43 90 | sylbid | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( ( ( P ^ N ) / ( P ^ n ) ) e. ZZ -> ( N < n -> n <_ N ) ) ) |
| 92 | 34 91 | sylbid | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( ( P ^ n ) || ( P ^ N ) -> ( N < n -> n <_ N ) ) ) |
| 93 | 92 | adantr | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( ( P ^ n ) || ( P ^ N ) -> ( N < n -> n <_ N ) ) ) |
| 94 | 12 93 | sylbid | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( A || ( P ^ N ) -> ( N < n -> n <_ N ) ) ) |
| 95 | 94 | ex | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( A = ( P ^ n ) -> ( A || ( P ^ N ) -> ( N < n -> n <_ N ) ) ) ) |
| 96 | 95 | com23 | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( A || ( P ^ N ) -> ( A = ( P ^ n ) -> ( N < n -> n <_ N ) ) ) ) |
| 97 | 96 | ex | |- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( n e. NN0 -> ( A || ( P ^ N ) -> ( A = ( P ^ n ) -> ( N < n -> n <_ N ) ) ) ) ) |
| 98 | 97 | com23 | |- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( A || ( P ^ N ) -> ( n e. NN0 -> ( A = ( P ^ n ) -> ( N < n -> n <_ N ) ) ) ) ) |
| 99 | 98 | imp41 | |- ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( N < n -> n <_ N ) ) |
| 100 | 99 | com12 | |- ( N < n -> ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> n <_ N ) ) |
| 101 | 100 | jao1i | |- ( ( n <_ N \/ N < n ) -> ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> n <_ N ) ) |
| 102 | 10 101 | mpcom | |- ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> n <_ N ) |
| 103 | simpr | |- ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> A = ( P ^ n ) ) |
|
| 104 | 102 103 | jca | |- ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( n <_ N /\ A = ( P ^ n ) ) ) |
| 105 | 104 | ex | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) -> ( A = ( P ^ n ) -> ( n <_ N /\ A = ( P ^ n ) ) ) ) |
| 106 | 105 | reximdva | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> ( E. n e. NN0 A = ( P ^ n ) -> E. n e. NN0 ( n <_ N /\ A = ( P ^ n ) ) ) ) |
| 107 | 2 106 | mpd | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN0 ( n <_ N /\ A = ( P ^ n ) ) ) |
| 108 | 107 | ex | |- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN0 ( n <_ N /\ A = ( P ^ n ) ) ) ) |