This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a positive integer divides a prime power, it is a prime power. (Contributed by AV, 25-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsprmpweq | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑃 ∈ ℙ ) | |
| 2 | simp2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℕ ) | |
| 3 | 1 2 | pccld | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ) |
| 4 | 3 | adantr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ) |
| 5 | oveq2 | ⊢ ( 𝑛 = ( 𝑃 pCnt 𝐴 ) → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) | |
| 6 | 5 | eqeq2d | ⊢ ( 𝑛 = ( 𝑃 pCnt 𝐴 ) → ( 𝐴 = ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 7 | 6 | adantl | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑛 = ( 𝑃 pCnt 𝐴 ) ) → ( 𝐴 = ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 8 | simpl3 | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → 𝑁 ∈ ℕ0 ) | |
| 9 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ 𝑁 ) ) | |
| 10 | 9 | breq2d | ⊢ ( 𝑛 = 𝑁 → ( 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ) |
| 11 | 10 | adantl | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑛 = 𝑁 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ) |
| 12 | simpr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) | |
| 13 | 8 11 12 | rspcedvd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ∃ 𝑛 ∈ ℕ0 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) |
| 14 | pcprmpw2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) | |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ∃ 𝑛 ∈ ℕ0 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 16 | 15 | adantr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ( ∃ 𝑛 ∈ ℕ0 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 17 | 13 16 | mpbid | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) |
| 18 | 4 7 17 | rspcedvd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ) |
| 19 | 18 | ex | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |