This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bijection between the divisors of a prime power and the integers less than or equal to the exponent. (Contributed by Mario Carneiro, 5-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dvdsppwf1o.f | |- F = ( n e. ( 0 ... A ) |-> ( P ^ n ) ) |
|
| Assertion | dvdsppwf1o | |- ( ( P e. Prime /\ A e. NN0 ) -> F : ( 0 ... A ) -1-1-onto-> { x e. NN | x || ( P ^ A ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsppwf1o.f | |- F = ( n e. ( 0 ... A ) |-> ( P ^ n ) ) |
|
| 2 | breq1 | |- ( x = ( P ^ n ) -> ( x || ( P ^ A ) <-> ( P ^ n ) || ( P ^ A ) ) ) |
|
| 3 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 4 | 3 | adantr | |- ( ( P e. Prime /\ A e. NN0 ) -> P e. NN ) |
| 5 | elfznn0 | |- ( n e. ( 0 ... A ) -> n e. NN0 ) |
|
| 6 | nnexpcl | |- ( ( P e. NN /\ n e. NN0 ) -> ( P ^ n ) e. NN ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ n e. ( 0 ... A ) ) -> ( P ^ n ) e. NN ) |
| 8 | prmz | |- ( P e. Prime -> P e. ZZ ) |
|
| 9 | 8 | ad2antrr | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ n e. ( 0 ... A ) ) -> P e. ZZ ) |
| 10 | 5 | adantl | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ n e. ( 0 ... A ) ) -> n e. NN0 ) |
| 11 | elfzuz3 | |- ( n e. ( 0 ... A ) -> A e. ( ZZ>= ` n ) ) |
|
| 12 | 11 | adantl | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ n e. ( 0 ... A ) ) -> A e. ( ZZ>= ` n ) ) |
| 13 | dvdsexp | |- ( ( P e. ZZ /\ n e. NN0 /\ A e. ( ZZ>= ` n ) ) -> ( P ^ n ) || ( P ^ A ) ) |
|
| 14 | 9 10 12 13 | syl3anc | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ n e. ( 0 ... A ) ) -> ( P ^ n ) || ( P ^ A ) ) |
| 15 | 2 7 14 | elrabd | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ n e. ( 0 ... A ) ) -> ( P ^ n ) e. { x e. NN | x || ( P ^ A ) } ) |
| 16 | simpl | |- ( ( P e. Prime /\ A e. NN0 ) -> P e. Prime ) |
|
| 17 | elrabi | |- ( m e. { x e. NN | x || ( P ^ A ) } -> m e. NN ) |
|
| 18 | pccl | |- ( ( P e. Prime /\ m e. NN ) -> ( P pCnt m ) e. NN0 ) |
|
| 19 | 16 17 18 | syl2an | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> ( P pCnt m ) e. NN0 ) |
| 20 | 16 | adantr | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> P e. Prime ) |
| 21 | 17 | adantl | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> m e. NN ) |
| 22 | 21 | nnzd | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> m e. ZZ ) |
| 23 | 8 | ad2antrr | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> P e. ZZ ) |
| 24 | simplr | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> A e. NN0 ) |
|
| 25 | zexpcl | |- ( ( P e. ZZ /\ A e. NN0 ) -> ( P ^ A ) e. ZZ ) |
|
| 26 | 23 24 25 | syl2anc | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> ( P ^ A ) e. ZZ ) |
| 27 | breq1 | |- ( x = m -> ( x || ( P ^ A ) <-> m || ( P ^ A ) ) ) |
|
| 28 | 27 | elrab | |- ( m e. { x e. NN | x || ( P ^ A ) } <-> ( m e. NN /\ m || ( P ^ A ) ) ) |
| 29 | 28 | simprbi | |- ( m e. { x e. NN | x || ( P ^ A ) } -> m || ( P ^ A ) ) |
| 30 | 29 | adantl | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> m || ( P ^ A ) ) |
| 31 | pcdvdstr | |- ( ( P e. Prime /\ ( m e. ZZ /\ ( P ^ A ) e. ZZ /\ m || ( P ^ A ) ) ) -> ( P pCnt m ) <_ ( P pCnt ( P ^ A ) ) ) |
|
| 32 | 20 22 26 30 31 | syl13anc | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> ( P pCnt m ) <_ ( P pCnt ( P ^ A ) ) ) |
| 33 | pcidlem | |- ( ( P e. Prime /\ A e. NN0 ) -> ( P pCnt ( P ^ A ) ) = A ) |
|
| 34 | 33 | adantr | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> ( P pCnt ( P ^ A ) ) = A ) |
| 35 | 32 34 | breqtrd | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> ( P pCnt m ) <_ A ) |
| 36 | fznn0 | |- ( A e. NN0 -> ( ( P pCnt m ) e. ( 0 ... A ) <-> ( ( P pCnt m ) e. NN0 /\ ( P pCnt m ) <_ A ) ) ) |
|
| 37 | 24 36 | syl | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> ( ( P pCnt m ) e. ( 0 ... A ) <-> ( ( P pCnt m ) e. NN0 /\ ( P pCnt m ) <_ A ) ) ) |
| 38 | 19 35 37 | mpbir2and | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> ( P pCnt m ) e. ( 0 ... A ) ) |
| 39 | oveq2 | |- ( n = A -> ( P ^ n ) = ( P ^ A ) ) |
|
| 40 | 39 | breq2d | |- ( n = A -> ( m || ( P ^ n ) <-> m || ( P ^ A ) ) ) |
| 41 | 40 | rspcev | |- ( ( A e. NN0 /\ m || ( P ^ A ) ) -> E. n e. NN0 m || ( P ^ n ) ) |
| 42 | 24 30 41 | syl2anc | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> E. n e. NN0 m || ( P ^ n ) ) |
| 43 | pcprmpw2 | |- ( ( P e. Prime /\ m e. NN ) -> ( E. n e. NN0 m || ( P ^ n ) <-> m = ( P ^ ( P pCnt m ) ) ) ) |
|
| 44 | 16 17 43 | syl2an | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> ( E. n e. NN0 m || ( P ^ n ) <-> m = ( P ^ ( P pCnt m ) ) ) ) |
| 45 | 42 44 | mpbid | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> m = ( P ^ ( P pCnt m ) ) ) |
| 46 | 45 | adantrl | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ ( n e. ( 0 ... A ) /\ m e. { x e. NN | x || ( P ^ A ) } ) ) -> m = ( P ^ ( P pCnt m ) ) ) |
| 47 | oveq2 | |- ( n = ( P pCnt m ) -> ( P ^ n ) = ( P ^ ( P pCnt m ) ) ) |
|
| 48 | 47 | eqeq2d | |- ( n = ( P pCnt m ) -> ( m = ( P ^ n ) <-> m = ( P ^ ( P pCnt m ) ) ) ) |
| 49 | 46 48 | syl5ibrcom | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ ( n e. ( 0 ... A ) /\ m e. { x e. NN | x || ( P ^ A ) } ) ) -> ( n = ( P pCnt m ) -> m = ( P ^ n ) ) ) |
| 50 | elfzelz | |- ( n e. ( 0 ... A ) -> n e. ZZ ) |
|
| 51 | pcid | |- ( ( P e. Prime /\ n e. ZZ ) -> ( P pCnt ( P ^ n ) ) = n ) |
|
| 52 | 16 50 51 | syl2an | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ n e. ( 0 ... A ) ) -> ( P pCnt ( P ^ n ) ) = n ) |
| 53 | 52 | eqcomd | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ n e. ( 0 ... A ) ) -> n = ( P pCnt ( P ^ n ) ) ) |
| 54 | 53 | adantrr | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ ( n e. ( 0 ... A ) /\ m e. { x e. NN | x || ( P ^ A ) } ) ) -> n = ( P pCnt ( P ^ n ) ) ) |
| 55 | oveq2 | |- ( m = ( P ^ n ) -> ( P pCnt m ) = ( P pCnt ( P ^ n ) ) ) |
|
| 56 | 55 | eqeq2d | |- ( m = ( P ^ n ) -> ( n = ( P pCnt m ) <-> n = ( P pCnt ( P ^ n ) ) ) ) |
| 57 | 54 56 | syl5ibrcom | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ ( n e. ( 0 ... A ) /\ m e. { x e. NN | x || ( P ^ A ) } ) ) -> ( m = ( P ^ n ) -> n = ( P pCnt m ) ) ) |
| 58 | 49 57 | impbid | |- ( ( ( P e. Prime /\ A e. NN0 ) /\ ( n e. ( 0 ... A ) /\ m e. { x e. NN | x || ( P ^ A ) } ) ) -> ( n = ( P pCnt m ) <-> m = ( P ^ n ) ) ) |
| 59 | 1 15 38 58 | f1o2d | |- ( ( P e. Prime /\ A e. NN0 ) -> F : ( 0 ... A ) -1-1-onto-> { x e. NN | x || ( P ^ A ) } ) |