This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bijection from the numbers less than N / A to the multiples of A less than N . Useful for some sum manipulations. (Contributed by Mario Carneiro, 3-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsflf1o.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| dvdsflf1o.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | ||
| dvdsflf1o.f | ⊢ 𝐹 = ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ↦ ( 𝑁 · 𝑛 ) ) | ||
| Assertion | dvdsflf1o | ⊢ ( 𝜑 → 𝐹 : ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) –1-1-onto→ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsflf1o.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | dvdsflf1o.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 3 | dvdsflf1o.f | ⊢ 𝐹 = ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ↦ ( 𝑁 · 𝑛 ) ) | |
| 4 | breq2 | ⊢ ( 𝑥 = ( 𝑁 · 𝑛 ) → ( 𝑁 ∥ 𝑥 ↔ 𝑁 ∥ ( 𝑁 · 𝑛 ) ) ) | |
| 5 | elfznn | ⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) → 𝑛 ∈ ℕ ) | |
| 6 | nnmulcl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝑁 · 𝑛 ) ∈ ℕ ) | |
| 7 | 2 5 6 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → ( 𝑁 · 𝑛 ) ∈ ℕ ) |
| 8 | 1 2 | nndivred | ⊢ ( 𝜑 → ( 𝐴 / 𝑁 ) ∈ ℝ ) |
| 9 | fznnfl | ⊢ ( ( 𝐴 / 𝑁 ) ∈ ℝ → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ ( 𝐴 / 𝑁 ) ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ ( 𝐴 / 𝑁 ) ) ) ) |
| 11 | 10 | simplbda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → 𝑛 ≤ ( 𝐴 / 𝑁 ) ) |
| 12 | 5 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → 𝑛 ∈ ℕ ) |
| 13 | 12 | nnred | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → 𝑛 ∈ ℝ ) |
| 14 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → 𝐴 ∈ ℝ ) |
| 15 | 2 | nnred | ⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → 𝑁 ∈ ℝ ) |
| 17 | 2 | nngt0d | ⊢ ( 𝜑 → 0 < 𝑁 ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → 0 < 𝑁 ) |
| 19 | lemuldiv2 | ⊢ ( ( 𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → ( ( 𝑁 · 𝑛 ) ≤ 𝐴 ↔ 𝑛 ≤ ( 𝐴 / 𝑁 ) ) ) | |
| 20 | 13 14 16 18 19 | syl112anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → ( ( 𝑁 · 𝑛 ) ≤ 𝐴 ↔ 𝑛 ≤ ( 𝐴 / 𝑁 ) ) ) |
| 21 | 11 20 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → ( 𝑁 · 𝑛 ) ≤ 𝐴 ) |
| 22 | 2 | nnzd | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 23 | elfzelz | ⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) → 𝑛 ∈ ℤ ) | |
| 24 | zmulcl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑁 · 𝑛 ) ∈ ℤ ) | |
| 25 | 22 23 24 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → ( 𝑁 · 𝑛 ) ∈ ℤ ) |
| 26 | flge | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑁 · 𝑛 ) ∈ ℤ ) → ( ( 𝑁 · 𝑛 ) ≤ 𝐴 ↔ ( 𝑁 · 𝑛 ) ≤ ( ⌊ ‘ 𝐴 ) ) ) | |
| 27 | 14 25 26 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → ( ( 𝑁 · 𝑛 ) ≤ 𝐴 ↔ ( 𝑁 · 𝑛 ) ≤ ( ⌊ ‘ 𝐴 ) ) ) |
| 28 | 21 27 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → ( 𝑁 · 𝑛 ) ≤ ( ⌊ ‘ 𝐴 ) ) |
| 29 | 1 | flcld | ⊢ ( 𝜑 → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) |
| 30 | 29 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) |
| 31 | fznn | ⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℤ → ( ( 𝑁 · 𝑛 ) ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( ( 𝑁 · 𝑛 ) ∈ ℕ ∧ ( 𝑁 · 𝑛 ) ≤ ( ⌊ ‘ 𝐴 ) ) ) ) | |
| 32 | 30 31 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → ( ( 𝑁 · 𝑛 ) ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( ( 𝑁 · 𝑛 ) ∈ ℕ ∧ ( 𝑁 · 𝑛 ) ≤ ( ⌊ ‘ 𝐴 ) ) ) ) |
| 33 | 7 28 32 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → ( 𝑁 · 𝑛 ) ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 34 | dvdsmul1 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → 𝑁 ∥ ( 𝑁 · 𝑛 ) ) | |
| 35 | 22 23 34 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → 𝑁 ∥ ( 𝑁 · 𝑛 ) ) |
| 36 | 4 33 35 | elrabd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → ( 𝑁 · 𝑛 ) ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) |
| 37 | breq2 | ⊢ ( 𝑥 = 𝑚 → ( 𝑁 ∥ 𝑥 ↔ 𝑁 ∥ 𝑚 ) ) | |
| 38 | 37 | elrab | ⊢ ( 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ↔ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑁 ∥ 𝑚 ) ) |
| 39 | 38 | simprbi | ⊢ ( 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } → 𝑁 ∥ 𝑚 ) |
| 40 | 39 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → 𝑁 ∥ 𝑚 ) |
| 41 | elrabi | ⊢ ( 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } → 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) | |
| 42 | 41 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 43 | elfznn | ⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑚 ∈ ℕ ) | |
| 44 | 42 43 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → 𝑚 ∈ ℕ ) |
| 45 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → 𝑁 ∈ ℕ ) |
| 46 | nndivdvds | ⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ∥ 𝑚 ↔ ( 𝑚 / 𝑁 ) ∈ ℕ ) ) | |
| 47 | 44 45 46 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → ( 𝑁 ∥ 𝑚 ↔ ( 𝑚 / 𝑁 ) ∈ ℕ ) ) |
| 48 | 40 47 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → ( 𝑚 / 𝑁 ) ∈ ℕ ) |
| 49 | fznnfl | ⊢ ( 𝐴 ∈ ℝ → ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑚 ∈ ℕ ∧ 𝑚 ≤ 𝐴 ) ) ) | |
| 50 | 1 49 | syl | ⊢ ( 𝜑 → ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑚 ∈ ℕ ∧ 𝑚 ≤ 𝐴 ) ) ) |
| 51 | 50 | simplbda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑚 ≤ 𝐴 ) |
| 52 | 41 51 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → 𝑚 ≤ 𝐴 ) |
| 53 | 44 | nnred | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → 𝑚 ∈ ℝ ) |
| 54 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → 𝐴 ∈ ℝ ) |
| 55 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → 𝑁 ∈ ℝ ) |
| 56 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → 0 < 𝑁 ) |
| 57 | lediv1 | ⊢ ( ( 𝑚 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → ( 𝑚 ≤ 𝐴 ↔ ( 𝑚 / 𝑁 ) ≤ ( 𝐴 / 𝑁 ) ) ) | |
| 58 | 53 54 55 56 57 | syl112anc | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → ( 𝑚 ≤ 𝐴 ↔ ( 𝑚 / 𝑁 ) ≤ ( 𝐴 / 𝑁 ) ) ) |
| 59 | 52 58 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → ( 𝑚 / 𝑁 ) ≤ ( 𝐴 / 𝑁 ) ) |
| 60 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → ( 𝐴 / 𝑁 ) ∈ ℝ ) |
| 61 | fznnfl | ⊢ ( ( 𝐴 / 𝑁 ) ∈ ℝ → ( ( 𝑚 / 𝑁 ) ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ↔ ( ( 𝑚 / 𝑁 ) ∈ ℕ ∧ ( 𝑚 / 𝑁 ) ≤ ( 𝐴 / 𝑁 ) ) ) ) | |
| 62 | 60 61 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → ( ( 𝑚 / 𝑁 ) ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ↔ ( ( 𝑚 / 𝑁 ) ∈ ℕ ∧ ( 𝑚 / 𝑁 ) ≤ ( 𝐴 / 𝑁 ) ) ) ) |
| 63 | 48 59 62 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → ( 𝑚 / 𝑁 ) ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) |
| 64 | 44 | nncnd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) → 𝑚 ∈ ℂ ) |
| 65 | 64 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) ) → 𝑚 ∈ ℂ ) |
| 66 | 2 | nncnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 67 | 66 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) ) → 𝑁 ∈ ℂ ) |
| 68 | 12 | nncnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ) → 𝑛 ∈ ℂ ) |
| 69 | 68 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) ) → 𝑛 ∈ ℂ ) |
| 70 | 2 | nnne0d | ⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
| 71 | 70 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) ) → 𝑁 ≠ 0 ) |
| 72 | 65 67 69 71 | divmuld | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) ) → ( ( 𝑚 / 𝑁 ) = 𝑛 ↔ ( 𝑁 · 𝑛 ) = 𝑚 ) ) |
| 73 | eqcom | ⊢ ( 𝑛 = ( 𝑚 / 𝑁 ) ↔ ( 𝑚 / 𝑁 ) = 𝑛 ) | |
| 74 | eqcom | ⊢ ( 𝑚 = ( 𝑁 · 𝑛 ) ↔ ( 𝑁 · 𝑛 ) = 𝑚 ) | |
| 75 | 72 73 74 | 3bitr4g | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) ∧ 𝑚 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) ) → ( 𝑛 = ( 𝑚 / 𝑁 ) ↔ 𝑚 = ( 𝑁 · 𝑛 ) ) ) |
| 76 | 3 36 63 75 | f1o2d | ⊢ ( 𝜑 → 𝐹 : ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑁 ) ) ) –1-1-onto→ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑁 ∥ 𝑥 } ) |