This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvaddf.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| dvaddf.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | ||
| dvaddf.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) | ||
| dvaddf.df | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) | ||
| dvaddf.dg | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐺 ) = 𝑋 ) | ||
| Assertion | dvaddf | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) = ( ( 𝑆 D 𝐹 ) ∘f + ( 𝑆 D 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvaddf.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | dvaddf.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 3 | dvaddf.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) | |
| 4 | dvaddf.df | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) | |
| 5 | dvaddf.dg | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐺 ) = 𝑋 ) | |
| 6 | dvbsss | ⊢ dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 | |
| 7 | 4 6 | eqsstrrdi | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
| 8 | 1 7 | ssexd | ⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 9 | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) | |
| 10 | 1 9 | syl | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| 11 | 4 | feq2d | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ↔ ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) ) |
| 12 | 10 11 | mpbid | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) |
| 13 | 12 | ffnd | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) Fn 𝑋 ) |
| 14 | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ) | |
| 15 | 1 14 | syl | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ) |
| 16 | 5 | feq2d | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ↔ ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ ) ) |
| 17 | 15 16 | mpbid | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ ) |
| 18 | 17 | ffnd | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) Fn 𝑋 ) |
| 19 | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) : dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ⟶ ℂ ) | |
| 20 | 1 19 | syl | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) : dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ⟶ ℂ ) |
| 21 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 22 | 1 21 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 23 | addcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) | |
| 24 | 23 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
| 25 | inidm | ⊢ ( 𝑋 ∩ 𝑋 ) = 𝑋 | |
| 26 | 24 2 3 8 8 25 | off | ⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) : 𝑋 ⟶ ℂ ) |
| 27 | 22 26 7 | dvbss | ⊢ ( 𝜑 → dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ⊆ 𝑋 ) |
| 28 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 : 𝑋 ⟶ ℂ ) |
| 29 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑋 ⊆ 𝑆 ) |
| 30 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐺 : 𝑋 ⟶ ℂ ) |
| 31 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑆 ⊆ ℂ ) |
| 32 | 4 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝑥 ∈ 𝑋 ) ) |
| 33 | 32 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ) |
| 34 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑆 ∈ { ℝ , ℂ } ) |
| 35 | ffun | ⊢ ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ → Fun ( 𝑆 D 𝐹 ) ) | |
| 36 | funfvbrb | ⊢ ( Fun ( 𝑆 D 𝐹 ) → ( 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝑥 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) | |
| 37 | 34 9 35 36 | 4syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝑥 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) |
| 38 | 33 37 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) |
| 39 | 5 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ dom ( 𝑆 D 𝐺 ) ↔ 𝑥 ∈ 𝑋 ) ) |
| 40 | 39 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ dom ( 𝑆 D 𝐺 ) ) |
| 41 | ffun | ⊢ ( ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ → Fun ( 𝑆 D 𝐺 ) ) | |
| 42 | funfvbrb | ⊢ ( Fun ( 𝑆 D 𝐺 ) → ( 𝑥 ∈ dom ( 𝑆 D 𝐺 ) ↔ 𝑥 ( 𝑆 D 𝐺 ) ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) | |
| 43 | 34 14 41 42 | 4syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ dom ( 𝑆 D 𝐺 ) ↔ 𝑥 ( 𝑆 D 𝐺 ) ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 44 | 40 43 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ( 𝑆 D 𝐺 ) ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) |
| 45 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 46 | 28 29 30 29 31 38 44 45 | dvaddbr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) + ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 47 | reldv | ⊢ Rel ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) | |
| 48 | 47 | releldmi | ⊢ ( 𝑥 ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) + ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) → 𝑥 ∈ dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ) |
| 49 | 46 48 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ) |
| 50 | 27 49 | eqelssd | ⊢ ( 𝜑 → dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) = 𝑋 ) |
| 51 | 50 | feq2d | ⊢ ( 𝜑 → ( ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) : dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ⟶ ℂ ↔ ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) : 𝑋 ⟶ ℂ ) ) |
| 52 | 20 51 | mpbid | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) : 𝑋 ⟶ ℂ ) |
| 53 | 52 | ffnd | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) Fn 𝑋 ) |
| 54 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) = ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) | |
| 55 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) = ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) | |
| 56 | 28 29 30 29 34 33 40 | dvadd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) + ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 57 | 56 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) + ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) = ( ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ‘ 𝑥 ) ) |
| 58 | 8 13 18 53 54 55 57 | offveq | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ∘f + ( 𝑆 D 𝐺 ) ) = ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ) |
| 59 | 58 | eqcomd | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) = ( ( 𝑆 D 𝐹 ) ∘f + ( 𝑆 D 𝐺 ) ) ) |