This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvaddf.s | |- ( ph -> S e. { RR , CC } ) |
|
| dvaddf.f | |- ( ph -> F : X --> CC ) |
||
| dvaddf.g | |- ( ph -> G : X --> CC ) |
||
| dvaddf.df | |- ( ph -> dom ( S _D F ) = X ) |
||
| dvaddf.dg | |- ( ph -> dom ( S _D G ) = X ) |
||
| Assertion | dvaddf | |- ( ph -> ( S _D ( F oF + G ) ) = ( ( S _D F ) oF + ( S _D G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvaddf.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvaddf.f | |- ( ph -> F : X --> CC ) |
|
| 3 | dvaddf.g | |- ( ph -> G : X --> CC ) |
|
| 4 | dvaddf.df | |- ( ph -> dom ( S _D F ) = X ) |
|
| 5 | dvaddf.dg | |- ( ph -> dom ( S _D G ) = X ) |
|
| 6 | dvbsss | |- dom ( S _D F ) C_ S |
|
| 7 | 4 6 | eqsstrrdi | |- ( ph -> X C_ S ) |
| 8 | 1 7 | ssexd | |- ( ph -> X e. _V ) |
| 9 | dvfg | |- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |
|
| 10 | 1 9 | syl | |- ( ph -> ( S _D F ) : dom ( S _D F ) --> CC ) |
| 11 | 4 | feq2d | |- ( ph -> ( ( S _D F ) : dom ( S _D F ) --> CC <-> ( S _D F ) : X --> CC ) ) |
| 12 | 10 11 | mpbid | |- ( ph -> ( S _D F ) : X --> CC ) |
| 13 | 12 | ffnd | |- ( ph -> ( S _D F ) Fn X ) |
| 14 | dvfg | |- ( S e. { RR , CC } -> ( S _D G ) : dom ( S _D G ) --> CC ) |
|
| 15 | 1 14 | syl | |- ( ph -> ( S _D G ) : dom ( S _D G ) --> CC ) |
| 16 | 5 | feq2d | |- ( ph -> ( ( S _D G ) : dom ( S _D G ) --> CC <-> ( S _D G ) : X --> CC ) ) |
| 17 | 15 16 | mpbid | |- ( ph -> ( S _D G ) : X --> CC ) |
| 18 | 17 | ffnd | |- ( ph -> ( S _D G ) Fn X ) |
| 19 | dvfg | |- ( S e. { RR , CC } -> ( S _D ( F oF + G ) ) : dom ( S _D ( F oF + G ) ) --> CC ) |
|
| 20 | 1 19 | syl | |- ( ph -> ( S _D ( F oF + G ) ) : dom ( S _D ( F oF + G ) ) --> CC ) |
| 21 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
| 22 | 1 21 | syl | |- ( ph -> S C_ CC ) |
| 23 | addcl | |- ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) |
|
| 24 | 23 | adantl | |- ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x + y ) e. CC ) |
| 25 | inidm | |- ( X i^i X ) = X |
|
| 26 | 24 2 3 8 8 25 | off | |- ( ph -> ( F oF + G ) : X --> CC ) |
| 27 | 22 26 7 | dvbss | |- ( ph -> dom ( S _D ( F oF + G ) ) C_ X ) |
| 28 | 2 | adantr | |- ( ( ph /\ x e. X ) -> F : X --> CC ) |
| 29 | 7 | adantr | |- ( ( ph /\ x e. X ) -> X C_ S ) |
| 30 | 3 | adantr | |- ( ( ph /\ x e. X ) -> G : X --> CC ) |
| 31 | 22 | adantr | |- ( ( ph /\ x e. X ) -> S C_ CC ) |
| 32 | 4 | eleq2d | |- ( ph -> ( x e. dom ( S _D F ) <-> x e. X ) ) |
| 33 | 32 | biimpar | |- ( ( ph /\ x e. X ) -> x e. dom ( S _D F ) ) |
| 34 | 1 | adantr | |- ( ( ph /\ x e. X ) -> S e. { RR , CC } ) |
| 35 | ffun | |- ( ( S _D F ) : dom ( S _D F ) --> CC -> Fun ( S _D F ) ) |
|
| 36 | funfvbrb | |- ( Fun ( S _D F ) -> ( x e. dom ( S _D F ) <-> x ( S _D F ) ( ( S _D F ) ` x ) ) ) |
|
| 37 | 34 9 35 36 | 4syl | |- ( ( ph /\ x e. X ) -> ( x e. dom ( S _D F ) <-> x ( S _D F ) ( ( S _D F ) ` x ) ) ) |
| 38 | 33 37 | mpbid | |- ( ( ph /\ x e. X ) -> x ( S _D F ) ( ( S _D F ) ` x ) ) |
| 39 | 5 | eleq2d | |- ( ph -> ( x e. dom ( S _D G ) <-> x e. X ) ) |
| 40 | 39 | biimpar | |- ( ( ph /\ x e. X ) -> x e. dom ( S _D G ) ) |
| 41 | ffun | |- ( ( S _D G ) : dom ( S _D G ) --> CC -> Fun ( S _D G ) ) |
|
| 42 | funfvbrb | |- ( Fun ( S _D G ) -> ( x e. dom ( S _D G ) <-> x ( S _D G ) ( ( S _D G ) ` x ) ) ) |
|
| 43 | 34 14 41 42 | 4syl | |- ( ( ph /\ x e. X ) -> ( x e. dom ( S _D G ) <-> x ( S _D G ) ( ( S _D G ) ` x ) ) ) |
| 44 | 40 43 | mpbid | |- ( ( ph /\ x e. X ) -> x ( S _D G ) ( ( S _D G ) ` x ) ) |
| 45 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 46 | 28 29 30 29 31 38 44 45 | dvaddbr | |- ( ( ph /\ x e. X ) -> x ( S _D ( F oF + G ) ) ( ( ( S _D F ) ` x ) + ( ( S _D G ) ` x ) ) ) |
| 47 | reldv | |- Rel ( S _D ( F oF + G ) ) |
|
| 48 | 47 | releldmi | |- ( x ( S _D ( F oF + G ) ) ( ( ( S _D F ) ` x ) + ( ( S _D G ) ` x ) ) -> x e. dom ( S _D ( F oF + G ) ) ) |
| 49 | 46 48 | syl | |- ( ( ph /\ x e. X ) -> x e. dom ( S _D ( F oF + G ) ) ) |
| 50 | 27 49 | eqelssd | |- ( ph -> dom ( S _D ( F oF + G ) ) = X ) |
| 51 | 50 | feq2d | |- ( ph -> ( ( S _D ( F oF + G ) ) : dom ( S _D ( F oF + G ) ) --> CC <-> ( S _D ( F oF + G ) ) : X --> CC ) ) |
| 52 | 20 51 | mpbid | |- ( ph -> ( S _D ( F oF + G ) ) : X --> CC ) |
| 53 | 52 | ffnd | |- ( ph -> ( S _D ( F oF + G ) ) Fn X ) |
| 54 | eqidd | |- ( ( ph /\ x e. X ) -> ( ( S _D F ) ` x ) = ( ( S _D F ) ` x ) ) |
|
| 55 | eqidd | |- ( ( ph /\ x e. X ) -> ( ( S _D G ) ` x ) = ( ( S _D G ) ` x ) ) |
|
| 56 | 28 29 30 29 34 33 40 | dvadd | |- ( ( ph /\ x e. X ) -> ( ( S _D ( F oF + G ) ) ` x ) = ( ( ( S _D F ) ` x ) + ( ( S _D G ) ` x ) ) ) |
| 57 | 56 | eqcomd | |- ( ( ph /\ x e. X ) -> ( ( ( S _D F ) ` x ) + ( ( S _D G ) ` x ) ) = ( ( S _D ( F oF + G ) ) ` x ) ) |
| 58 | 8 13 18 53 54 55 57 | offveq | |- ( ph -> ( ( S _D F ) oF + ( S _D G ) ) = ( S _D ( F oF + G ) ) ) |
| 59 | 58 | eqcomd | |- ( ph -> ( S _D ( F oF + G ) ) = ( ( S _D F ) oF + ( S _D G ) ) ) |