This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of definition of the internal direct product, which states that S is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eldprdi.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| eldprdi.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | ||
| eldprdi.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | ||
| eldprdi.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | ||
| eldprdi.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | ||
| Assertion | eldprdi | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ ( 𝐺 DProd 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldprdi.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | eldprdi.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | |
| 3 | eldprdi.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| 4 | eldprdi.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | |
| 5 | eldprdi.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | |
| 6 | eqid | ⊢ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝐹 ) | |
| 7 | oveq2 | ⊢ ( 𝑓 = 𝐹 → ( 𝐺 Σg 𝑓 ) = ( 𝐺 Σg 𝐹 ) ) | |
| 8 | 7 | rspceeqv | ⊢ ( ( 𝐹 ∈ 𝑊 ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝐹 ) ) → ∃ 𝑓 ∈ 𝑊 ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) |
| 9 | 5 6 8 | sylancl | ⊢ ( 𝜑 → ∃ 𝑓 ∈ 𝑊 ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) |
| 10 | 1 2 | eldprd | ⊢ ( dom 𝑆 = 𝐼 → ( ( 𝐺 Σg 𝐹 ) ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ 𝑊 ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ) |
| 11 | 4 10 | syl | ⊢ ( 𝜑 → ( ( 𝐺 Σg 𝐹 ) ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ 𝑊 ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ) |
| 12 | 3 9 11 | mpbir2and | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ ( 𝐺 DProd 𝑆 ) ) |