This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a finitely supported function in the family S . (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdff.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | |
| dprdff.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | ||
| dprdff.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | ||
| Assertion | dprdw | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑊 ↔ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ∧ 𝐹 finSupp 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdff.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | |
| 2 | dprdff.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| 3 | dprdff.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | |
| 4 | elex | ⊢ ( 𝐹 ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) → 𝐹 ∈ V ) | |
| 5 | 4 | a1i | ⊢ ( 𝜑 → ( 𝐹 ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) → 𝐹 ∈ V ) ) |
| 6 | 2 3 | dprddomcld | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 7 | fnex | ⊢ ( ( 𝐹 Fn 𝐼 ∧ 𝐼 ∈ V ) → 𝐹 ∈ V ) | |
| 8 | 7 | expcom | ⊢ ( 𝐼 ∈ V → ( 𝐹 Fn 𝐼 → 𝐹 ∈ V ) ) |
| 9 | 6 8 | syl | ⊢ ( 𝜑 → ( 𝐹 Fn 𝐼 → 𝐹 ∈ V ) ) |
| 10 | 9 | adantrd | ⊢ ( 𝜑 → ( ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) → 𝐹 ∈ V ) ) |
| 11 | fveq2 | ⊢ ( 𝑖 = 𝑥 → ( 𝑆 ‘ 𝑖 ) = ( 𝑆 ‘ 𝑥 ) ) | |
| 12 | 11 | cbvixpv | ⊢ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) = X 𝑥 ∈ 𝐼 ( 𝑆 ‘ 𝑥 ) |
| 13 | 12 | eleq2i | ⊢ ( 𝐹 ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ↔ 𝐹 ∈ X 𝑥 ∈ 𝐼 ( 𝑆 ‘ 𝑥 ) ) |
| 14 | elixp2 | ⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐼 ( 𝑆 ‘ 𝑥 ) ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) ) | |
| 15 | 3anass | ⊢ ( ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) ↔ ( 𝐹 ∈ V ∧ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) ) ) | |
| 16 | 13 14 15 | 3bitri | ⊢ ( 𝐹 ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ↔ ( 𝐹 ∈ V ∧ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) ) ) |
| 17 | 16 | baib | ⊢ ( 𝐹 ∈ V → ( 𝐹 ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ↔ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) ) ) |
| 18 | 17 | a1i | ⊢ ( 𝜑 → ( 𝐹 ∈ V → ( 𝐹 ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ↔ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) ) ) ) |
| 19 | 5 10 18 | pm5.21ndd | ⊢ ( 𝜑 → ( 𝐹 ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ↔ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) ) ) |
| 20 | 19 | anbi1d | ⊢ ( 𝜑 → ( ( 𝐹 ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∧ 𝐹 finSupp 0 ) ↔ ( ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) ∧ 𝐹 finSupp 0 ) ) ) |
| 21 | breq1 | ⊢ ( ℎ = 𝐹 → ( ℎ finSupp 0 ↔ 𝐹 finSupp 0 ) ) | |
| 22 | 21 1 | elrab2 | ⊢ ( 𝐹 ∈ 𝑊 ↔ ( 𝐹 ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∧ 𝐹 finSupp 0 ) ) |
| 23 | df-3an | ⊢ ( ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ∧ 𝐹 finSupp 0 ) ↔ ( ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) ∧ 𝐹 finSupp 0 ) ) | |
| 24 | 20 22 23 | 3bitr4g | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑊 ↔ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ∧ 𝐹 finSupp 0 ) ) ) |