This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dominance law for union. Proposition 4.24(a) of Mendelson p. 257. (Contributed by NM, 3-Sep-2004) (Revised by Mario Carneiro, 26-Apr-2015) Avoid ax-pow . (Revised by BTernaryTau, 4-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | undom | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ≼ 𝐷 ) ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐴 ∪ 𝐶 ) ≼ ( 𝐵 ∪ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | undif2 | ⊢ ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) = ( 𝐴 ∪ 𝐶 ) | |
| 2 | reldom | ⊢ Rel ≼ | |
| 3 | 2 | brrelex2i | ⊢ ( 𝐴 ≼ 𝐵 → 𝐵 ∈ V ) |
| 4 | 2 | brrelex2i | ⊢ ( 𝐶 ≼ 𝐷 → 𝐷 ∈ V ) |
| 5 | unexg | ⊢ ( ( 𝐵 ∈ V ∧ 𝐷 ∈ V ) → ( 𝐵 ∪ 𝐷 ) ∈ V ) | |
| 6 | 3 4 5 | syl2an | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ≼ 𝐷 ) → ( 𝐵 ∪ 𝐷 ) ∈ V ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ≼ 𝐷 ) ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐵 ∪ 𝐷 ) ∈ V ) |
| 8 | brdomi | ⊢ ( 𝐴 ≼ 𝐵 → ∃ 𝑥 𝑥 : 𝐴 –1-1→ 𝐵 ) | |
| 9 | brdomi | ⊢ ( 𝐶 ≼ 𝐷 → ∃ 𝑦 𝑦 : 𝐶 –1-1→ 𝐷 ) | |
| 10 | exdistrv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 : 𝐴 –1-1→ 𝐵 ∧ 𝑦 : 𝐶 –1-1→ 𝐷 ) ↔ ( ∃ 𝑥 𝑥 : 𝐴 –1-1→ 𝐵 ∧ ∃ 𝑦 𝑦 : 𝐶 –1-1→ 𝐷 ) ) | |
| 11 | disjdif | ⊢ ( 𝐴 ∩ ( 𝐶 ∖ 𝐴 ) ) = ∅ | |
| 12 | difss | ⊢ ( 𝐶 ∖ 𝐴 ) ⊆ 𝐶 | |
| 13 | f1ssres | ⊢ ( ( 𝑦 : 𝐶 –1-1→ 𝐷 ∧ ( 𝐶 ∖ 𝐴 ) ⊆ 𝐶 ) → ( 𝑦 ↾ ( 𝐶 ∖ 𝐴 ) ) : ( 𝐶 ∖ 𝐴 ) –1-1→ 𝐷 ) | |
| 14 | 12 13 | mpan2 | ⊢ ( 𝑦 : 𝐶 –1-1→ 𝐷 → ( 𝑦 ↾ ( 𝐶 ∖ 𝐴 ) ) : ( 𝐶 ∖ 𝐴 ) –1-1→ 𝐷 ) |
| 15 | f1un | ⊢ ( ( ( 𝑥 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑦 ↾ ( 𝐶 ∖ 𝐴 ) ) : ( 𝐶 ∖ 𝐴 ) –1-1→ 𝐷 ) ∧ ( ( 𝐴 ∩ ( 𝐶 ∖ 𝐴 ) ) = ∅ ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ) → ( 𝑥 ∪ ( 𝑦 ↾ ( 𝐶 ∖ 𝐴 ) ) ) : ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) –1-1→ ( 𝐵 ∪ 𝐷 ) ) | |
| 16 | 14 15 | sylanl2 | ⊢ ( ( ( 𝑥 : 𝐴 –1-1→ 𝐵 ∧ 𝑦 : 𝐶 –1-1→ 𝐷 ) ∧ ( ( 𝐴 ∩ ( 𝐶 ∖ 𝐴 ) ) = ∅ ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ) → ( 𝑥 ∪ ( 𝑦 ↾ ( 𝐶 ∖ 𝐴 ) ) ) : ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) –1-1→ ( 𝐵 ∪ 𝐷 ) ) |
| 17 | 11 16 | mpanr1 | ⊢ ( ( ( 𝑥 : 𝐴 –1-1→ 𝐵 ∧ 𝑦 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝑥 ∪ ( 𝑦 ↾ ( 𝐶 ∖ 𝐴 ) ) ) : ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) –1-1→ ( 𝐵 ∪ 𝐷 ) ) |
| 18 | vex | ⊢ 𝑥 ∈ V | |
| 19 | vex | ⊢ 𝑦 ∈ V | |
| 20 | 19 | resex | ⊢ ( 𝑦 ↾ ( 𝐶 ∖ 𝐴 ) ) ∈ V |
| 21 | 18 20 | unex | ⊢ ( 𝑥 ∪ ( 𝑦 ↾ ( 𝐶 ∖ 𝐴 ) ) ) ∈ V |
| 22 | f1dom3g | ⊢ ( ( ( 𝑥 ∪ ( 𝑦 ↾ ( 𝐶 ∖ 𝐴 ) ) ) ∈ V ∧ ( 𝐵 ∪ 𝐷 ) ∈ V ∧ ( 𝑥 ∪ ( 𝑦 ↾ ( 𝐶 ∖ 𝐴 ) ) ) : ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) –1-1→ ( 𝐵 ∪ 𝐷 ) ) → ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) ≼ ( 𝐵 ∪ 𝐷 ) ) | |
| 23 | 21 22 | mp3an1 | ⊢ ( ( ( 𝐵 ∪ 𝐷 ) ∈ V ∧ ( 𝑥 ∪ ( 𝑦 ↾ ( 𝐶 ∖ 𝐴 ) ) ) : ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) –1-1→ ( 𝐵 ∪ 𝐷 ) ) → ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) ≼ ( 𝐵 ∪ 𝐷 ) ) |
| 24 | 23 | expcom | ⊢ ( ( 𝑥 ∪ ( 𝑦 ↾ ( 𝐶 ∖ 𝐴 ) ) ) : ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) –1-1→ ( 𝐵 ∪ 𝐷 ) → ( ( 𝐵 ∪ 𝐷 ) ∈ V → ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) ≼ ( 𝐵 ∪ 𝐷 ) ) ) |
| 25 | 17 24 | syl | ⊢ ( ( ( 𝑥 : 𝐴 –1-1→ 𝐵 ∧ 𝑦 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( ( 𝐵 ∪ 𝐷 ) ∈ V → ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) ≼ ( 𝐵 ∪ 𝐷 ) ) ) |
| 26 | 25 | ex | ⊢ ( ( 𝑥 : 𝐴 –1-1→ 𝐵 ∧ 𝑦 : 𝐶 –1-1→ 𝐷 ) → ( ( 𝐵 ∩ 𝐷 ) = ∅ → ( ( 𝐵 ∪ 𝐷 ) ∈ V → ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) ≼ ( 𝐵 ∪ 𝐷 ) ) ) ) |
| 27 | 26 | exlimivv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 : 𝐴 –1-1→ 𝐵 ∧ 𝑦 : 𝐶 –1-1→ 𝐷 ) → ( ( 𝐵 ∩ 𝐷 ) = ∅ → ( ( 𝐵 ∪ 𝐷 ) ∈ V → ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) ≼ ( 𝐵 ∪ 𝐷 ) ) ) ) |
| 28 | 10 27 | sylbir | ⊢ ( ( ∃ 𝑥 𝑥 : 𝐴 –1-1→ 𝐵 ∧ ∃ 𝑦 𝑦 : 𝐶 –1-1→ 𝐷 ) → ( ( 𝐵 ∩ 𝐷 ) = ∅ → ( ( 𝐵 ∪ 𝐷 ) ∈ V → ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) ≼ ( 𝐵 ∪ 𝐷 ) ) ) ) |
| 29 | 8 9 28 | syl2an | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ≼ 𝐷 ) → ( ( 𝐵 ∩ 𝐷 ) = ∅ → ( ( 𝐵 ∪ 𝐷 ) ∈ V → ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) ≼ ( 𝐵 ∪ 𝐷 ) ) ) ) |
| 30 | 29 | imp | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ≼ 𝐷 ) ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( ( 𝐵 ∪ 𝐷 ) ∈ V → ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) ≼ ( 𝐵 ∪ 𝐷 ) ) ) |
| 31 | 7 30 | mpd | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ≼ 𝐷 ) ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) ≼ ( 𝐵 ∪ 𝐷 ) ) |
| 32 | 1 31 | eqbrtrrid | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ≼ 𝐷 ) ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐴 ∪ 𝐶 ) ≼ ( 𝐵 ∪ 𝐷 ) ) |