This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integers divided by gcd are coprime. (Contributed by AV, 12-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divgcdcoprm0 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcddvds | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
| 3 | gcdcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) | |
| 4 | 3 | nn0zd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
| 5 | simpl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℤ ) | |
| 6 | 4 5 | jca | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) ) |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) ) |
| 8 | divides | ⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ∃ 𝑎 ∈ ℤ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ∃ 𝑎 ∈ ℤ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) |
| 10 | simpr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℤ ) | |
| 11 | 4 10 | jca | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
| 12 | 11 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
| 13 | divides | ⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ∃ 𝑏 ∈ ℤ ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ∃ 𝑏 ∈ ℤ ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) ) |
| 15 | 9 14 | anbi12d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ↔ ( ∃ 𝑎 ∈ ℤ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ∃ 𝑏 ∈ ℤ ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) ) ) |
| 16 | bezout | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ∃ 𝑚 ∈ ℤ ∃ 𝑛 ∈ ℤ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) ) | |
| 17 | 16 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ∃ 𝑚 ∈ ℤ ∃ 𝑛 ∈ ℤ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) ) |
| 18 | oveq1 | ⊢ ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) · 𝑚 ) = ( 𝐴 · 𝑚 ) ) | |
| 19 | oveq1 | ⊢ ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) · 𝑛 ) = ( 𝐵 · 𝑛 ) ) | |
| 20 | 18 19 | oveqan12rd | ⊢ ( ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ∧ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) → ( ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) · 𝑚 ) + ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) · 𝑛 ) ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) ) |
| 21 | 20 | eqeq2d | ⊢ ( ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ∧ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) → ( ( 𝐴 gcd 𝐵 ) = ( ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) · 𝑚 ) + ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) · 𝑛 ) ) ↔ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) ) ) |
| 22 | 21 | bicomd | ⊢ ( ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ∧ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) → ( ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) ↔ ( 𝐴 gcd 𝐵 ) = ( ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) · 𝑚 ) + ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) · 𝑛 ) ) ) ) |
| 23 | simpl | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 𝑎 ∈ ℤ ) | |
| 24 | 23 | zcnd | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 𝑎 ∈ ℂ ) |
| 25 | 24 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑎 ∈ ℂ ) |
| 26 | 3 | nn0cnd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 27 | 26 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 28 | 27 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 29 | simpl | ⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → 𝑚 ∈ ℤ ) | |
| 30 | 29 | zcnd | ⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → 𝑚 ∈ ℂ ) |
| 31 | 30 | ad2antlr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑚 ∈ ℂ ) |
| 32 | 25 28 31 | mul32d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) · 𝑚 ) = ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) ) |
| 33 | simpr | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 𝑏 ∈ ℤ ) | |
| 34 | 33 | zcnd | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 𝑏 ∈ ℂ ) |
| 35 | 34 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑏 ∈ ℂ ) |
| 36 | simpr | ⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℤ ) | |
| 37 | 36 | zcnd | ⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℂ ) |
| 38 | 37 | ad2antlr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑛 ∈ ℂ ) |
| 39 | 35 28 38 | mul32d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) · 𝑛 ) = ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) |
| 40 | 32 39 | oveq12d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) · 𝑚 ) + ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) · 𝑛 ) ) = ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) ) |
| 41 | 40 | eqeq2d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝐴 gcd 𝐵 ) = ( ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) · 𝑚 ) + ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) · 𝑛 ) ) ↔ ( 𝐴 gcd 𝐵 ) = ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) ) ) |
| 42 | 23 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑎 ∈ ℤ ) |
| 43 | 29 | ad2antlr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑚 ∈ ℤ ) |
| 44 | 42 43 | zmulcld | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑎 · 𝑚 ) ∈ ℤ ) |
| 45 | 4 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
| 46 | 45 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
| 47 | 44 46 | zmulcld | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) |
| 48 | 33 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑏 ∈ ℤ ) |
| 49 | 36 | ad2antlr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑛 ∈ ℤ ) |
| 50 | 48 49 | zmulcld | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑏 · 𝑛 ) ∈ ℤ ) |
| 51 | 3 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
| 52 | 51 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
| 53 | 52 | nn0zd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
| 54 | 50 53 | zmulcld | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) |
| 55 | 47 54 | zaddcld | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) ∈ ℤ ) |
| 56 | 55 | zcnd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) ∈ ℂ ) |
| 57 | gcd2n0cl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) | |
| 58 | nnrp | ⊢ ( ( 𝐴 gcd 𝐵 ) ∈ ℕ → ( 𝐴 gcd 𝐵 ) ∈ ℝ+ ) | |
| 59 | 58 | rpcnne0d | ⊢ ( ( 𝐴 gcd 𝐵 ) ∈ ℕ → ( ( 𝐴 gcd 𝐵 ) ∈ ℂ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ) ) |
| 60 | 57 59 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 gcd 𝐵 ) ∈ ℂ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ) ) |
| 61 | 60 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝐴 gcd 𝐵 ) ∈ ℂ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ) ) |
| 62 | div11 | ⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℂ ∧ ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) ∈ ℂ ∧ ( ( 𝐴 gcd 𝐵 ) ∈ ℂ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ) ) → ( ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = ( ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) / ( 𝐴 gcd 𝐵 ) ) ↔ ( 𝐴 gcd 𝐵 ) = ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) ) ) | |
| 63 | 28 56 61 62 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = ( ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) / ( 𝐴 gcd 𝐵 ) ) ↔ ( 𝐴 gcd 𝐵 ) = ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) ) ) |
| 64 | divid | ⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℂ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = 1 ) | |
| 65 | 61 64 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = 1 ) |
| 66 | 47 | zcnd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) ∈ ℂ ) |
| 67 | 54 | zcnd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ∈ ℂ ) |
| 68 | divdir | ⊢ ( ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) ∈ ℂ ∧ ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ∈ ℂ ∧ ( ( 𝐴 gcd 𝐵 ) ∈ ℂ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ) ) → ( ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) / ( 𝐴 gcd 𝐵 ) ) = ( ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) / ( 𝐴 gcd 𝐵 ) ) + ( ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) / ( 𝐴 gcd 𝐵 ) ) ) ) | |
| 69 | 66 67 61 68 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) / ( 𝐴 gcd 𝐵 ) ) = ( ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) / ( 𝐴 gcd 𝐵 ) ) + ( ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) / ( 𝐴 gcd 𝐵 ) ) ) ) |
| 70 | 44 | zcnd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑎 · 𝑚 ) ∈ ℂ ) |
| 71 | 51 | nn0cnd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 72 | 71 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 73 | 57 | nnne0d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
| 74 | 73 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
| 75 | 70 72 74 | divcan4d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) / ( 𝐴 gcd 𝐵 ) ) = ( 𝑎 · 𝑚 ) ) |
| 76 | 50 | zcnd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑏 · 𝑛 ) ∈ ℂ ) |
| 77 | 76 28 74 | divcan4d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) / ( 𝐴 gcd 𝐵 ) ) = ( 𝑏 · 𝑛 ) ) |
| 78 | 75 77 | oveq12d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) / ( 𝐴 gcd 𝐵 ) ) + ( ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) / ( 𝐴 gcd 𝐵 ) ) ) = ( ( 𝑎 · 𝑚 ) + ( 𝑏 · 𝑛 ) ) ) |
| 79 | 69 78 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑎 · 𝑚 ) + ( 𝑏 · 𝑛 ) ) ) |
| 80 | 65 79 | eqeq12d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = ( ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) / ( 𝐴 gcd 𝐵 ) ) ↔ 1 = ( ( 𝑎 · 𝑚 ) + ( 𝑏 · 𝑛 ) ) ) ) |
| 81 | 41 63 80 | 3bitr2d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝐴 gcd 𝐵 ) = ( ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) · 𝑚 ) + ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) · 𝑛 ) ) ↔ 1 = ( ( 𝑎 · 𝑚 ) + ( 𝑏 · 𝑛 ) ) ) ) |
| 82 | 22 81 | sylan9bbr | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ∧ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) → ( ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) ↔ 1 = ( ( 𝑎 · 𝑚 ) + ( 𝑏 · 𝑛 ) ) ) ) |
| 83 | eqcom | ⊢ ( 1 = ( ( 𝑎 · 𝑚 ) + ( 𝑏 · 𝑛 ) ) ↔ ( ( 𝑎 · 𝑚 ) + ( 𝑏 · 𝑛 ) ) = 1 ) | |
| 84 | simpr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) | |
| 85 | 84 | anim1ci | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ) |
| 86 | bezoutr1 | ⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( ( ( 𝑎 · 𝑚 ) + ( 𝑏 · 𝑛 ) ) = 1 → ( 𝑎 gcd 𝑏 ) = 1 ) ) | |
| 87 | 85 86 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( 𝑎 · 𝑚 ) + ( 𝑏 · 𝑛 ) ) = 1 → ( 𝑎 gcd 𝑏 ) = 1 ) ) |
| 88 | 87 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ∧ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) → ( ( ( 𝑎 · 𝑚 ) + ( 𝑏 · 𝑛 ) ) = 1 → ( 𝑎 gcd 𝑏 ) = 1 ) ) |
| 89 | 83 88 | biimtrid | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ∧ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) → ( 1 = ( ( 𝑎 · 𝑚 ) + ( 𝑏 · 𝑛 ) ) → ( 𝑎 gcd 𝑏 ) = 1 ) ) |
| 90 | simpll1 | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝐴 ∈ ℤ ) | |
| 91 | 90 | zcnd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝐴 ∈ ℂ ) |
| 92 | divmul3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ ( ( 𝐴 gcd 𝐵 ) ∈ ℂ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ) ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ↔ 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ) ) | |
| 93 | 91 25 61 92 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ↔ 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ) ) |
| 94 | eqcom | ⊢ ( 𝑎 = ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↔ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ) | |
| 95 | eqcom | ⊢ ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ↔ 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ) | |
| 96 | 93 94 95 | 3bitr4g | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑎 = ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↔ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) |
| 97 | 96 | biimprd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → 𝑎 = ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ) |
| 98 | 97 | a1d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → 𝑎 = ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ) ) |
| 99 | 98 | imp32 | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ∧ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) → 𝑎 = ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) |
| 100 | simp2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℤ ) | |
| 101 | 100 | zcnd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) |
| 102 | 101 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝐵 ∈ ℂ ) |
| 103 | divmul3 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ ( ( 𝐴 gcd 𝐵 ) ∈ ℂ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ) ) → ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ↔ 𝐵 = ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) ) ) | |
| 104 | 102 35 61 103 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ↔ 𝐵 = ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) ) ) |
| 105 | eqcom | ⊢ ( 𝑏 = ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↔ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ) | |
| 106 | eqcom | ⊢ ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ↔ 𝐵 = ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) ) | |
| 107 | 104 105 106 | 3bitr4g | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑏 = ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↔ ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) ) |
| 108 | 107 | biimprd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → 𝑏 = ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
| 109 | 108 | a1dd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → 𝑏 = ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) ) |
| 110 | 109 | imp32 | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ∧ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) → 𝑏 = ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) |
| 111 | 99 110 | oveq12d | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ∧ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) → ( 𝑎 gcd 𝑏 ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
| 112 | 111 | eqeq1d | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ∧ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) → ( ( 𝑎 gcd 𝑏 ) = 1 ↔ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) |
| 113 | 89 112 | sylibd | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ∧ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) → ( 1 = ( ( 𝑎 · 𝑚 ) + ( 𝑏 · 𝑛 ) ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) |
| 114 | 82 113 | sylbid | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ∧ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) → ( ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) |
| 115 | 114 | exp32 | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) ) ) |
| 116 | 115 | com34 | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) ) ) |
| 117 | 116 | com23 | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) ) ) |
| 118 | 117 | ex | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) ) ) ) |
| 119 | 118 | com23 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) → ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) ) ) ) |
| 120 | 119 | rexlimdvva | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ∃ 𝑚 ∈ ℤ ∃ 𝑛 ∈ ℤ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) → ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) ) ) ) |
| 121 | 17 120 | mpd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) ) ) |
| 122 | 121 | impl | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) ) |
| 123 | 122 | rexlimdva | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑎 ∈ ℤ ) → ( ∃ 𝑏 ∈ ℤ ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) ) |
| 124 | 123 | com23 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑎 ∈ ℤ ) → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ∃ 𝑏 ∈ ℤ ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) ) |
| 125 | 124 | rexlimdva | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ∃ 𝑎 ∈ ℤ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ∃ 𝑏 ∈ ℤ ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) ) |
| 126 | 125 | impd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( ∃ 𝑎 ∈ ℤ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ∃ 𝑏 ∈ ℤ ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) |
| 127 | 15 126 | sylbid | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) |
| 128 | 2 127 | mpd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) |