This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integers divided by gcd are coprime (see ProofWiki "Integers Divided by GCD are Coprime", 11-Jul-2021, https://proofwiki.org/wiki/Integers_Divided_by_GCD_are_Coprime ): Any pair of integers, not both zero, can be reduced to a pair of coprime ones by dividing them by their gcd. (Contributed by AV, 12-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divgcdcoprmex | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑀 · 𝑎 ) ∧ 𝐵 = ( 𝑀 · 𝑏 ) ∧ ( 𝑎 gcd 𝑏 ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℤ ) | |
| 2 | 1 | anim2i | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
| 3 | zeqzmulgcd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ∃ 𝑎 ∈ ℤ 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ∃ 𝑎 ∈ ℤ 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ) |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ∃ 𝑎 ∈ ℤ 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ) |
| 6 | zeqzmulgcd | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ∃ 𝑏 ∈ ℤ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) | |
| 7 | 6 | adantlr | ⊢ ( ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝐴 ∈ ℤ ) → ∃ 𝑏 ∈ ℤ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) |
| 8 | 7 | ancoms | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ∃ 𝑏 ∈ ℤ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) |
| 9 | 8 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ∃ 𝑏 ∈ ℤ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) |
| 10 | reeanv | ⊢ ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ↔ ( ∃ 𝑎 ∈ ℤ 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ ∃ 𝑏 ∈ ℤ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ) | |
| 11 | zcn | ⊢ ( 𝑎 ∈ ℤ → 𝑎 ∈ ℂ ) | |
| 12 | 11 | adantl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) → 𝑎 ∈ ℂ ) |
| 13 | gcdcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) | |
| 14 | 2 13 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
| 15 | 14 | nn0cnd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 16 | 15 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 17 | 16 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 18 | 12 17 | mulcomd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) → ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = ( ( 𝐴 gcd 𝐵 ) · 𝑎 ) ) |
| 19 | simp3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → 𝑀 = ( 𝐴 gcd 𝐵 ) ) | |
| 20 | 19 | eqcomd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 gcd 𝐵 ) = 𝑀 ) |
| 21 | 20 | oveq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( ( 𝐴 gcd 𝐵 ) · 𝑎 ) = ( 𝑀 · 𝑎 ) ) |
| 22 | 21 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) · 𝑎 ) = ( 𝑀 · 𝑎 ) ) |
| 23 | 18 22 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) → ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = ( 𝑀 · 𝑎 ) ) |
| 24 | 23 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) ∧ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ) → ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = ( 𝑀 · 𝑎 ) ) |
| 25 | eqeq1 | ⊢ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 = ( 𝑀 · 𝑎 ) ↔ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = ( 𝑀 · 𝑎 ) ) ) | |
| 26 | 25 | adantr | ⊢ ( ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) → ( 𝐴 = ( 𝑀 · 𝑎 ) ↔ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = ( 𝑀 · 𝑎 ) ) ) |
| 27 | 26 | adantl | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) ∧ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ) → ( 𝐴 = ( 𝑀 · 𝑎 ) ↔ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = ( 𝑀 · 𝑎 ) ) ) |
| 28 | 24 27 | mpbird | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) ∧ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ) → 𝐴 = ( 𝑀 · 𝑎 ) ) |
| 29 | simpr | ⊢ ( ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) → 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) | |
| 30 | 2 | ancomd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ) |
| 31 | gcdcom | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝐵 gcd 𝐴 ) = ( 𝐴 gcd 𝐵 ) ) | |
| 32 | 30 31 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐵 gcd 𝐴 ) = ( 𝐴 gcd 𝐵 ) ) |
| 33 | 32 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐵 gcd 𝐴 ) = ( 𝐴 gcd 𝐵 ) ) |
| 34 | 33 | oveq2d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) = ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) ) |
| 35 | 34 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑏 ∈ ℤ ) → ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) = ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) ) |
| 36 | zcn | ⊢ ( 𝑏 ∈ ℤ → 𝑏 ∈ ℂ ) | |
| 37 | 36 | adantl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑏 ∈ ℤ ) → 𝑏 ∈ ℂ ) |
| 38 | 14 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
| 39 | 38 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
| 40 | 39 | nn0cnd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 41 | 37 40 | mulcomd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑏 ∈ ℤ ) → ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = ( ( 𝐴 gcd 𝐵 ) · 𝑏 ) ) |
| 42 | 20 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) = 𝑀 ) |
| 43 | 42 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑏 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) · 𝑏 ) = ( 𝑀 · 𝑏 ) ) |
| 44 | 35 41 43 | 3eqtrd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑏 ∈ ℤ ) → ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) = ( 𝑀 · 𝑏 ) ) |
| 45 | 44 | adantlr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) = ( 𝑀 · 𝑏 ) ) |
| 46 | 29 45 | sylan9eqr | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) ∧ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ) → 𝐵 = ( 𝑀 · 𝑏 ) ) |
| 47 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 48 | 47 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → 𝐴 ∈ ℂ ) |
| 49 | 48 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → 𝐴 ∈ ℂ ) |
| 50 | 12 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → 𝑎 ∈ ℂ ) |
| 51 | simp1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → 𝐴 ∈ ℤ ) | |
| 52 | 1 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → 𝐵 ∈ ℤ ) |
| 53 | 51 52 | gcdcld | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
| 54 | 53 | nn0cnd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 55 | 54 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 56 | gcdeq0 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) | |
| 57 | simpr | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → 𝐵 = 0 ) | |
| 58 | 56 57 | biimtrdi | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) = 0 → 𝐵 = 0 ) ) |
| 59 | 58 | necon3d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ≠ 0 → ( 𝐴 gcd 𝐵 ) ≠ 0 ) ) |
| 60 | 59 | impr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
| 61 | 60 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
| 62 | 61 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
| 63 | 49 50 55 62 | divmul3d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ↔ 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ) ) |
| 64 | 63 | bicomd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ↔ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ) ) |
| 65 | zcn | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) | |
| 66 | 65 | adantr | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) |
| 67 | 66 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → 𝐵 ∈ ℂ ) |
| 68 | 67 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → 𝐵 ∈ ℂ ) |
| 69 | 36 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → 𝑏 ∈ ℂ ) |
| 70 | 68 69 55 62 | divmul3d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ↔ 𝐵 = ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) ) ) |
| 71 | 2 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
| 72 | gcdcom | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) = ( 𝐵 gcd 𝐴 ) ) | |
| 73 | 71 72 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 gcd 𝐵 ) = ( 𝐵 gcd 𝐴 ) ) |
| 74 | 73 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) = ( 𝐵 gcd 𝐴 ) ) |
| 75 | 74 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) |
| 76 | 75 | eqeq2d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( 𝐵 = ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) ↔ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ) |
| 77 | 70 76 | bitr2d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ↔ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ) ) |
| 78 | 64 77 | anbi12d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ↔ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ) ) ) |
| 79 | 3anass | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ↔ ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) ) | |
| 80 | 79 | biimpri | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) |
| 81 | 80 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) |
| 82 | divgcdcoprm0 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) | |
| 83 | 81 82 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) |
| 84 | oveq12 | ⊢ ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = ( 𝑎 gcd 𝑏 ) ) | |
| 85 | 84 | eqeq1d | ⊢ ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ↔ ( 𝑎 gcd 𝑏 ) = 1 ) ) |
| 86 | 83 85 | syl5ibcom | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ) → ( 𝑎 gcd 𝑏 ) = 1 ) ) |
| 87 | 86 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ) → ( 𝑎 gcd 𝑏 ) = 1 ) ) |
| 88 | 78 87 | sylbid | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) → ( 𝑎 gcd 𝑏 ) = 1 ) ) |
| 89 | 88 | imp | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) ∧ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ) → ( 𝑎 gcd 𝑏 ) = 1 ) |
| 90 | 28 46 89 | 3jca | ⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) ∧ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ) → ( 𝐴 = ( 𝑀 · 𝑎 ) ∧ 𝐵 = ( 𝑀 · 𝑏 ) ∧ ( 𝑎 gcd 𝑏 ) = 1 ) ) |
| 91 | 90 | ex | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) → ( 𝐴 = ( 𝑀 · 𝑎 ) ∧ 𝐵 = ( 𝑀 · 𝑏 ) ∧ ( 𝑎 gcd 𝑏 ) = 1 ) ) ) |
| 92 | 91 | reximdva | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) → ( ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) → ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑀 · 𝑎 ) ∧ 𝐵 = ( 𝑀 · 𝑏 ) ∧ ( 𝑎 gcd 𝑏 ) = 1 ) ) ) |
| 93 | 92 | reximdva | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑀 · 𝑎 ) ∧ 𝐵 = ( 𝑀 · 𝑏 ) ∧ ( 𝑎 gcd 𝑏 ) = 1 ) ) ) |
| 94 | 10 93 | biimtrrid | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( ( ∃ 𝑎 ∈ ℤ 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ ∃ 𝑏 ∈ ℤ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑀 · 𝑎 ) ∧ 𝐵 = ( 𝑀 · 𝑏 ) ∧ ( 𝑎 gcd 𝑏 ) = 1 ) ) ) |
| 95 | 5 9 94 | mp2and | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑀 · 𝑎 ) ∧ 𝐵 = ( 𝑀 · 𝑏 ) ∧ ( 𝑎 gcd 𝑏 ) = 1 ) ) |