This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Converse of bezout for when the greater common divisor is one (sufficient condition for relative primality). (Contributed by Stefan O'Rear, 23-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bezoutr1 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 → ( 𝐴 gcd 𝐵 ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bezoutr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) → ( 𝐴 gcd 𝐵 ) ∥ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) ) | |
| 2 | 1 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) → ( 𝐴 gcd 𝐵 ) ∥ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) ) |
| 3 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) | |
| 4 | 2 3 | breqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) → ( 𝐴 gcd 𝐵 ) ∥ 1 ) |
| 5 | gcdcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) | |
| 6 | 5 | nn0zd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
| 7 | 6 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
| 8 | 1nn | ⊢ 1 ∈ ℕ | |
| 9 | 8 | a1i | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) → 1 ∈ ℕ ) |
| 10 | dvdsle | ⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 1 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 1 → ( 𝐴 gcd 𝐵 ) ≤ 1 ) ) | |
| 11 | 7 9 10 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) → ( ( 𝐴 gcd 𝐵 ) ∥ 1 → ( 𝐴 gcd 𝐵 ) ≤ 1 ) ) |
| 12 | 4 11 | mpd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) → ( 𝐴 gcd 𝐵 ) ≤ 1 ) |
| 13 | simpll | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) | |
| 14 | oveq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 · 𝑋 ) = ( 0 · 𝑋 ) ) | |
| 15 | oveq1 | ⊢ ( 𝐵 = 0 → ( 𝐵 · 𝑌 ) = ( 0 · 𝑌 ) ) | |
| 16 | 14 15 | oveqan12d | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = ( ( 0 · 𝑋 ) + ( 0 · 𝑌 ) ) ) |
| 17 | zcn | ⊢ ( 𝑋 ∈ ℤ → 𝑋 ∈ ℂ ) | |
| 18 | 17 | mul02d | ⊢ ( 𝑋 ∈ ℤ → ( 0 · 𝑋 ) = 0 ) |
| 19 | zcn | ⊢ ( 𝑌 ∈ ℤ → 𝑌 ∈ ℂ ) | |
| 20 | 19 | mul02d | ⊢ ( 𝑌 ∈ ℤ → ( 0 · 𝑌 ) = 0 ) |
| 21 | 18 20 | oveqan12d | ⊢ ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) → ( ( 0 · 𝑋 ) + ( 0 · 𝑌 ) ) = ( 0 + 0 ) ) |
| 22 | 16 21 | sylan9eqr | ⊢ ( ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ∧ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = ( 0 + 0 ) ) |
| 23 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 24 | 22 23 | eqtrdi | ⊢ ( ( ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ∧ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 0 ) |
| 25 | 24 | adantll | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 0 ) |
| 26 | 0ne1 | ⊢ 0 ≠ 1 | |
| 27 | 26 | a1i | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → 0 ≠ 1 ) |
| 28 | 25 27 | eqnetrd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) ≠ 1 ) |
| 29 | 28 | ex | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) → ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) ≠ 1 ) ) |
| 30 | 29 | necon2bd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 31 | 30 | imp | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
| 32 | gcdn0cl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) | |
| 33 | 13 31 32 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
| 34 | nnle1eq1 | ⊢ ( ( 𝐴 gcd 𝐵 ) ∈ ℕ → ( ( 𝐴 gcd 𝐵 ) ≤ 1 ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) | |
| 35 | 33 34 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) → ( ( 𝐴 gcd 𝐵 ) ≤ 1 ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) |
| 36 | 12 35 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 ) → ( 𝐴 gcd 𝐵 ) = 1 ) |
| 37 | 36 | ex | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 1 → ( 𝐴 gcd 𝐵 ) = 1 ) ) |