This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integers divided by gcd are coprime. (Contributed by AV, 12-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divgcdcoprm0 | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcddvds | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
| 3 | gcdcl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. NN0 ) |
|
| 4 | 3 | nn0zd | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. ZZ ) |
| 5 | simpl | |- ( ( A e. ZZ /\ B e. ZZ ) -> A e. ZZ ) |
|
| 6 | 4 5 | jca | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) e. ZZ /\ A e. ZZ ) ) |
| 7 | 6 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( A gcd B ) e. ZZ /\ A e. ZZ ) ) |
| 8 | divides | |- ( ( ( A gcd B ) e. ZZ /\ A e. ZZ ) -> ( ( A gcd B ) || A <-> E. a e. ZZ ( a x. ( A gcd B ) ) = A ) ) |
|
| 9 | 7 8 | syl | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( A gcd B ) || A <-> E. a e. ZZ ( a x. ( A gcd B ) ) = A ) ) |
| 10 | simpr | |- ( ( A e. ZZ /\ B e. ZZ ) -> B e. ZZ ) |
|
| 11 | 4 10 | jca | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) e. ZZ /\ B e. ZZ ) ) |
| 12 | 11 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( A gcd B ) e. ZZ /\ B e. ZZ ) ) |
| 13 | divides | |- ( ( ( A gcd B ) e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || B <-> E. b e. ZZ ( b x. ( A gcd B ) ) = B ) ) |
|
| 14 | 12 13 | syl | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( A gcd B ) || B <-> E. b e. ZZ ( b x. ( A gcd B ) ) = B ) ) |
| 15 | 9 14 | anbi12d | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( ( A gcd B ) || A /\ ( A gcd B ) || B ) <-> ( E. a e. ZZ ( a x. ( A gcd B ) ) = A /\ E. b e. ZZ ( b x. ( A gcd B ) ) = B ) ) ) |
| 16 | bezout | |- ( ( A e. ZZ /\ B e. ZZ ) -> E. m e. ZZ E. n e. ZZ ( A gcd B ) = ( ( A x. m ) + ( B x. n ) ) ) |
|
| 17 | 16 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> E. m e. ZZ E. n e. ZZ ( A gcd B ) = ( ( A x. m ) + ( B x. n ) ) ) |
| 18 | oveq1 | |- ( ( a x. ( A gcd B ) ) = A -> ( ( a x. ( A gcd B ) ) x. m ) = ( A x. m ) ) |
|
| 19 | oveq1 | |- ( ( b x. ( A gcd B ) ) = B -> ( ( b x. ( A gcd B ) ) x. n ) = ( B x. n ) ) |
|
| 20 | 18 19 | oveqan12rd | |- ( ( ( b x. ( A gcd B ) ) = B /\ ( a x. ( A gcd B ) ) = A ) -> ( ( ( a x. ( A gcd B ) ) x. m ) + ( ( b x. ( A gcd B ) ) x. n ) ) = ( ( A x. m ) + ( B x. n ) ) ) |
| 21 | 20 | eqeq2d | |- ( ( ( b x. ( A gcd B ) ) = B /\ ( a x. ( A gcd B ) ) = A ) -> ( ( A gcd B ) = ( ( ( a x. ( A gcd B ) ) x. m ) + ( ( b x. ( A gcd B ) ) x. n ) ) <-> ( A gcd B ) = ( ( A x. m ) + ( B x. n ) ) ) ) |
| 22 | 21 | bicomd | |- ( ( ( b x. ( A gcd B ) ) = B /\ ( a x. ( A gcd B ) ) = A ) -> ( ( A gcd B ) = ( ( A x. m ) + ( B x. n ) ) <-> ( A gcd B ) = ( ( ( a x. ( A gcd B ) ) x. m ) + ( ( b x. ( A gcd B ) ) x. n ) ) ) ) |
| 23 | simpl | |- ( ( a e. ZZ /\ b e. ZZ ) -> a e. ZZ ) |
|
| 24 | 23 | zcnd | |- ( ( a e. ZZ /\ b e. ZZ ) -> a e. CC ) |
| 25 | 24 | adantl | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> a e. CC ) |
| 26 | 3 | nn0cnd | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. CC ) |
| 27 | 26 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( A gcd B ) e. CC ) |
| 28 | 27 | ad2antrr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( A gcd B ) e. CC ) |
| 29 | simpl | |- ( ( m e. ZZ /\ n e. ZZ ) -> m e. ZZ ) |
|
| 30 | 29 | zcnd | |- ( ( m e. ZZ /\ n e. ZZ ) -> m e. CC ) |
| 31 | 30 | ad2antlr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> m e. CC ) |
| 32 | 25 28 31 | mul32d | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( a x. ( A gcd B ) ) x. m ) = ( ( a x. m ) x. ( A gcd B ) ) ) |
| 33 | simpr | |- ( ( a e. ZZ /\ b e. ZZ ) -> b e. ZZ ) |
|
| 34 | 33 | zcnd | |- ( ( a e. ZZ /\ b e. ZZ ) -> b e. CC ) |
| 35 | 34 | adantl | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> b e. CC ) |
| 36 | simpr | |- ( ( m e. ZZ /\ n e. ZZ ) -> n e. ZZ ) |
|
| 37 | 36 | zcnd | |- ( ( m e. ZZ /\ n e. ZZ ) -> n e. CC ) |
| 38 | 37 | ad2antlr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> n e. CC ) |
| 39 | 35 28 38 | mul32d | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( b x. ( A gcd B ) ) x. n ) = ( ( b x. n ) x. ( A gcd B ) ) ) |
| 40 | 32 39 | oveq12d | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( a x. ( A gcd B ) ) x. m ) + ( ( b x. ( A gcd B ) ) x. n ) ) = ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) ) |
| 41 | 40 | eqeq2d | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( A gcd B ) = ( ( ( a x. ( A gcd B ) ) x. m ) + ( ( b x. ( A gcd B ) ) x. n ) ) <-> ( A gcd B ) = ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) ) ) |
| 42 | 23 | adantl | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> a e. ZZ ) |
| 43 | 29 | ad2antlr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> m e. ZZ ) |
| 44 | 42 43 | zmulcld | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( a x. m ) e. ZZ ) |
| 45 | 4 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( A gcd B ) e. ZZ ) |
| 46 | 45 | ad2antrr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( A gcd B ) e. ZZ ) |
| 47 | 44 46 | zmulcld | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( a x. m ) x. ( A gcd B ) ) e. ZZ ) |
| 48 | 33 | adantl | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> b e. ZZ ) |
| 49 | 36 | ad2antlr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> n e. ZZ ) |
| 50 | 48 49 | zmulcld | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( b x. n ) e. ZZ ) |
| 51 | 3 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( A gcd B ) e. NN0 ) |
| 52 | 51 | ad2antrr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( A gcd B ) e. NN0 ) |
| 53 | 52 | nn0zd | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( A gcd B ) e. ZZ ) |
| 54 | 50 53 | zmulcld | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( b x. n ) x. ( A gcd B ) ) e. ZZ ) |
| 55 | 47 54 | zaddcld | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) e. ZZ ) |
| 56 | 55 | zcnd | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) e. CC ) |
| 57 | gcd2n0cl | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( A gcd B ) e. NN ) |
|
| 58 | nnrp | |- ( ( A gcd B ) e. NN -> ( A gcd B ) e. RR+ ) |
|
| 59 | 58 | rpcnne0d | |- ( ( A gcd B ) e. NN -> ( ( A gcd B ) e. CC /\ ( A gcd B ) =/= 0 ) ) |
| 60 | 57 59 | syl | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( A gcd B ) e. CC /\ ( A gcd B ) =/= 0 ) ) |
| 61 | 60 | ad2antrr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( A gcd B ) e. CC /\ ( A gcd B ) =/= 0 ) ) |
| 62 | div11 | |- ( ( ( A gcd B ) e. CC /\ ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) e. CC /\ ( ( A gcd B ) e. CC /\ ( A gcd B ) =/= 0 ) ) -> ( ( ( A gcd B ) / ( A gcd B ) ) = ( ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) / ( A gcd B ) ) <-> ( A gcd B ) = ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) ) ) |
|
| 63 | 28 56 61 62 | syl3anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( A gcd B ) / ( A gcd B ) ) = ( ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) / ( A gcd B ) ) <-> ( A gcd B ) = ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) ) ) |
| 64 | divid | |- ( ( ( A gcd B ) e. CC /\ ( A gcd B ) =/= 0 ) -> ( ( A gcd B ) / ( A gcd B ) ) = 1 ) |
|
| 65 | 61 64 | syl | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( A gcd B ) / ( A gcd B ) ) = 1 ) |
| 66 | 47 | zcnd | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( a x. m ) x. ( A gcd B ) ) e. CC ) |
| 67 | 54 | zcnd | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( b x. n ) x. ( A gcd B ) ) e. CC ) |
| 68 | divdir | |- ( ( ( ( a x. m ) x. ( A gcd B ) ) e. CC /\ ( ( b x. n ) x. ( A gcd B ) ) e. CC /\ ( ( A gcd B ) e. CC /\ ( A gcd B ) =/= 0 ) ) -> ( ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) / ( A gcd B ) ) = ( ( ( ( a x. m ) x. ( A gcd B ) ) / ( A gcd B ) ) + ( ( ( b x. n ) x. ( A gcd B ) ) / ( A gcd B ) ) ) ) |
|
| 69 | 66 67 61 68 | syl3anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) / ( A gcd B ) ) = ( ( ( ( a x. m ) x. ( A gcd B ) ) / ( A gcd B ) ) + ( ( ( b x. n ) x. ( A gcd B ) ) / ( A gcd B ) ) ) ) |
| 70 | 44 | zcnd | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( a x. m ) e. CC ) |
| 71 | 51 | nn0cnd | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( A gcd B ) e. CC ) |
| 72 | 71 | ad2antrr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( A gcd B ) e. CC ) |
| 73 | 57 | nnne0d | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( A gcd B ) =/= 0 ) |
| 74 | 73 | ad2antrr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( A gcd B ) =/= 0 ) |
| 75 | 70 72 74 | divcan4d | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( a x. m ) x. ( A gcd B ) ) / ( A gcd B ) ) = ( a x. m ) ) |
| 76 | 50 | zcnd | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( b x. n ) e. CC ) |
| 77 | 76 28 74 | divcan4d | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( b x. n ) x. ( A gcd B ) ) / ( A gcd B ) ) = ( b x. n ) ) |
| 78 | 75 77 | oveq12d | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( ( a x. m ) x. ( A gcd B ) ) / ( A gcd B ) ) + ( ( ( b x. n ) x. ( A gcd B ) ) / ( A gcd B ) ) ) = ( ( a x. m ) + ( b x. n ) ) ) |
| 79 | 69 78 | eqtrd | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) / ( A gcd B ) ) = ( ( a x. m ) + ( b x. n ) ) ) |
| 80 | 65 79 | eqeq12d | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( A gcd B ) / ( A gcd B ) ) = ( ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) / ( A gcd B ) ) <-> 1 = ( ( a x. m ) + ( b x. n ) ) ) ) |
| 81 | 41 63 80 | 3bitr2d | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( A gcd B ) = ( ( ( a x. ( A gcd B ) ) x. m ) + ( ( b x. ( A gcd B ) ) x. n ) ) <-> 1 = ( ( a x. m ) + ( b x. n ) ) ) ) |
| 82 | 22 81 | sylan9bbr | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( b x. ( A gcd B ) ) = B /\ ( a x. ( A gcd B ) ) = A ) ) -> ( ( A gcd B ) = ( ( A x. m ) + ( B x. n ) ) <-> 1 = ( ( a x. m ) + ( b x. n ) ) ) ) |
| 83 | eqcom | |- ( 1 = ( ( a x. m ) + ( b x. n ) ) <-> ( ( a x. m ) + ( b x. n ) ) = 1 ) |
|
| 84 | simpr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( m e. ZZ /\ n e. ZZ ) ) |
|
| 85 | 84 | anim1ci | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( a e. ZZ /\ b e. ZZ ) /\ ( m e. ZZ /\ n e. ZZ ) ) ) |
| 86 | bezoutr1 | |- ( ( ( a e. ZZ /\ b e. ZZ ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( ( ( a x. m ) + ( b x. n ) ) = 1 -> ( a gcd b ) = 1 ) ) |
|
| 87 | 85 86 | syl | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( a x. m ) + ( b x. n ) ) = 1 -> ( a gcd b ) = 1 ) ) |
| 88 | 87 | adantr | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( b x. ( A gcd B ) ) = B /\ ( a x. ( A gcd B ) ) = A ) ) -> ( ( ( a x. m ) + ( b x. n ) ) = 1 -> ( a gcd b ) = 1 ) ) |
| 89 | 83 88 | biimtrid | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( b x. ( A gcd B ) ) = B /\ ( a x. ( A gcd B ) ) = A ) ) -> ( 1 = ( ( a x. m ) + ( b x. n ) ) -> ( a gcd b ) = 1 ) ) |
| 90 | simpll1 | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> A e. ZZ ) |
|
| 91 | 90 | zcnd | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> A e. CC ) |
| 92 | divmul3 | |- ( ( A e. CC /\ a e. CC /\ ( ( A gcd B ) e. CC /\ ( A gcd B ) =/= 0 ) ) -> ( ( A / ( A gcd B ) ) = a <-> A = ( a x. ( A gcd B ) ) ) ) |
|
| 93 | 91 25 61 92 | syl3anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( A / ( A gcd B ) ) = a <-> A = ( a x. ( A gcd B ) ) ) ) |
| 94 | eqcom | |- ( a = ( A / ( A gcd B ) ) <-> ( A / ( A gcd B ) ) = a ) |
|
| 95 | eqcom | |- ( ( a x. ( A gcd B ) ) = A <-> A = ( a x. ( A gcd B ) ) ) |
|
| 96 | 93 94 95 | 3bitr4g | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( a = ( A / ( A gcd B ) ) <-> ( a x. ( A gcd B ) ) = A ) ) |
| 97 | 96 | biimprd | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( a x. ( A gcd B ) ) = A -> a = ( A / ( A gcd B ) ) ) ) |
| 98 | 97 | a1d | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( b x. ( A gcd B ) ) = B -> ( ( a x. ( A gcd B ) ) = A -> a = ( A / ( A gcd B ) ) ) ) ) |
| 99 | 98 | imp32 | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( b x. ( A gcd B ) ) = B /\ ( a x. ( A gcd B ) ) = A ) ) -> a = ( A / ( A gcd B ) ) ) |
| 100 | simp2 | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> B e. ZZ ) |
|
| 101 | 100 | zcnd | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> B e. CC ) |
| 102 | 101 | ad2antrr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> B e. CC ) |
| 103 | divmul3 | |- ( ( B e. CC /\ b e. CC /\ ( ( A gcd B ) e. CC /\ ( A gcd B ) =/= 0 ) ) -> ( ( B / ( A gcd B ) ) = b <-> B = ( b x. ( A gcd B ) ) ) ) |
|
| 104 | 102 35 61 103 | syl3anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( B / ( A gcd B ) ) = b <-> B = ( b x. ( A gcd B ) ) ) ) |
| 105 | eqcom | |- ( b = ( B / ( A gcd B ) ) <-> ( B / ( A gcd B ) ) = b ) |
|
| 106 | eqcom | |- ( ( b x. ( A gcd B ) ) = B <-> B = ( b x. ( A gcd B ) ) ) |
|
| 107 | 104 105 106 | 3bitr4g | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( b = ( B / ( A gcd B ) ) <-> ( b x. ( A gcd B ) ) = B ) ) |
| 108 | 107 | biimprd | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( b x. ( A gcd B ) ) = B -> b = ( B / ( A gcd B ) ) ) ) |
| 109 | 108 | a1dd | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( b x. ( A gcd B ) ) = B -> ( ( a x. ( A gcd B ) ) = A -> b = ( B / ( A gcd B ) ) ) ) ) |
| 110 | 109 | imp32 | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( b x. ( A gcd B ) ) = B /\ ( a x. ( A gcd B ) ) = A ) ) -> b = ( B / ( A gcd B ) ) ) |
| 111 | 99 110 | oveq12d | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( b x. ( A gcd B ) ) = B /\ ( a x. ( A gcd B ) ) = A ) ) -> ( a gcd b ) = ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) ) |
| 112 | 111 | eqeq1d | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( b x. ( A gcd B ) ) = B /\ ( a x. ( A gcd B ) ) = A ) ) -> ( ( a gcd b ) = 1 <-> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) |
| 113 | 89 112 | sylibd | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( b x. ( A gcd B ) ) = B /\ ( a x. ( A gcd B ) ) = A ) ) -> ( 1 = ( ( a x. m ) + ( b x. n ) ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) |
| 114 | 82 113 | sylbid | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( b x. ( A gcd B ) ) = B /\ ( a x. ( A gcd B ) ) = A ) ) -> ( ( A gcd B ) = ( ( A x. m ) + ( B x. n ) ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) |
| 115 | 114 | exp32 | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( b x. ( A gcd B ) ) = B -> ( ( a x. ( A gcd B ) ) = A -> ( ( A gcd B ) = ( ( A x. m ) + ( B x. n ) ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) ) ) |
| 116 | 115 | com34 | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( b x. ( A gcd B ) ) = B -> ( ( A gcd B ) = ( ( A x. m ) + ( B x. n ) ) -> ( ( a x. ( A gcd B ) ) = A -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) ) ) |
| 117 | 116 | com23 | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( A gcd B ) = ( ( A x. m ) + ( B x. n ) ) -> ( ( b x. ( A gcd B ) ) = B -> ( ( a x. ( A gcd B ) ) = A -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) ) ) |
| 118 | 117 | ex | |- ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( ( a e. ZZ /\ b e. ZZ ) -> ( ( A gcd B ) = ( ( A x. m ) + ( B x. n ) ) -> ( ( b x. ( A gcd B ) ) = B -> ( ( a x. ( A gcd B ) ) = A -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) ) ) ) |
| 119 | 118 | com23 | |- ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( ( A gcd B ) = ( ( A x. m ) + ( B x. n ) ) -> ( ( a e. ZZ /\ b e. ZZ ) -> ( ( b x. ( A gcd B ) ) = B -> ( ( a x. ( A gcd B ) ) = A -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) ) ) ) |
| 120 | 119 | rexlimdvva | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( E. m e. ZZ E. n e. ZZ ( A gcd B ) = ( ( A x. m ) + ( B x. n ) ) -> ( ( a e. ZZ /\ b e. ZZ ) -> ( ( b x. ( A gcd B ) ) = B -> ( ( a x. ( A gcd B ) ) = A -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) ) ) ) |
| 121 | 17 120 | mpd | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( a e. ZZ /\ b e. ZZ ) -> ( ( b x. ( A gcd B ) ) = B -> ( ( a x. ( A gcd B ) ) = A -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) ) ) |
| 122 | 121 | impl | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( ( b x. ( A gcd B ) ) = B -> ( ( a x. ( A gcd B ) ) = A -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) ) |
| 123 | 122 | rexlimdva | |- ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ a e. ZZ ) -> ( E. b e. ZZ ( b x. ( A gcd B ) ) = B -> ( ( a x. ( A gcd B ) ) = A -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) ) |
| 124 | 123 | com23 | |- ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ a e. ZZ ) -> ( ( a x. ( A gcd B ) ) = A -> ( E. b e. ZZ ( b x. ( A gcd B ) ) = B -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) ) |
| 125 | 124 | rexlimdva | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( E. a e. ZZ ( a x. ( A gcd B ) ) = A -> ( E. b e. ZZ ( b x. ( A gcd B ) ) = B -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) ) |
| 126 | 125 | impd | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( E. a e. ZZ ( a x. ( A gcd B ) ) = A /\ E. b e. ZZ ( b x. ( A gcd B ) ) = B ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) |
| 127 | 15 126 | sylbid | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( ( A gcd B ) || A /\ ( A gcd B ) || B ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) |
| 128 | 2 127 | mpd | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) |