This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One-to-one relationship for division. (Contributed by NM, 20-Apr-2006) (Proof shortened by Mario Carneiro, 27-May-2016) (Proof shortened by SN, 9-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | div11 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 𝐵 / 𝐶 ) ∈ ℂ ) | |
| 2 | 1 | 3expb | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐵 / 𝐶 ) ∈ ℂ ) |
| 3 | 2 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐵 / 𝐶 ) ∈ ℂ ) |
| 4 | divmul3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 / 𝐶 ) ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐶 ) ↔ 𝐴 = ( ( 𝐵 / 𝐶 ) · 𝐶 ) ) ) | |
| 5 | 3 4 | syld3an2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐶 ) ↔ 𝐴 = ( ( 𝐵 / 𝐶 ) · 𝐶 ) ) ) |
| 6 | divcan1 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( ( 𝐵 / 𝐶 ) · 𝐶 ) = 𝐵 ) | |
| 7 | 6 | 3expb | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐵 / 𝐶 ) · 𝐶 ) = 𝐵 ) |
| 8 | 7 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐵 / 𝐶 ) · 𝐶 ) = 𝐵 ) |
| 9 | 8 | eqeq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 = ( ( 𝐵 / 𝐶 ) · 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
| 10 | 5 9 | bitrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |