This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A discrete space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dis1stc | ⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ 1stω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 2 | distop | ⊢ ( { 𝑥 } ∈ V → 𝒫 { 𝑥 } ∈ Top ) | |
| 3 | 1 2 | ax-mp | ⊢ 𝒫 { 𝑥 } ∈ Top |
| 4 | tgtop | ⊢ ( 𝒫 { 𝑥 } ∈ Top → ( topGen ‘ 𝒫 { 𝑥 } ) = 𝒫 { 𝑥 } ) | |
| 5 | 3 4 | ax-mp | ⊢ ( topGen ‘ 𝒫 { 𝑥 } ) = 𝒫 { 𝑥 } |
| 6 | topbas | ⊢ ( 𝒫 { 𝑥 } ∈ Top → 𝒫 { 𝑥 } ∈ TopBases ) | |
| 7 | 3 6 | ax-mp | ⊢ 𝒫 { 𝑥 } ∈ TopBases |
| 8 | snfi | ⊢ { 𝑥 } ∈ Fin | |
| 9 | pwfi | ⊢ ( { 𝑥 } ∈ Fin ↔ 𝒫 { 𝑥 } ∈ Fin ) | |
| 10 | 8 9 | mpbi | ⊢ 𝒫 { 𝑥 } ∈ Fin |
| 11 | isfinite | ⊢ ( 𝒫 { 𝑥 } ∈ Fin ↔ 𝒫 { 𝑥 } ≺ ω ) | |
| 12 | 10 11 | mpbi | ⊢ 𝒫 { 𝑥 } ≺ ω |
| 13 | sdomdom | ⊢ ( 𝒫 { 𝑥 } ≺ ω → 𝒫 { 𝑥 } ≼ ω ) | |
| 14 | 12 13 | ax-mp | ⊢ 𝒫 { 𝑥 } ≼ ω |
| 15 | 2ndci | ⊢ ( ( 𝒫 { 𝑥 } ∈ TopBases ∧ 𝒫 { 𝑥 } ≼ ω ) → ( topGen ‘ 𝒫 { 𝑥 } ) ∈ 2ndω ) | |
| 16 | 7 14 15 | mp2an | ⊢ ( topGen ‘ 𝒫 { 𝑥 } ) ∈ 2ndω |
| 17 | 5 16 | eqeltrri | ⊢ 𝒫 { 𝑥 } ∈ 2ndω |
| 18 | 2ndc1stc | ⊢ ( 𝒫 { 𝑥 } ∈ 2ndω → 𝒫 { 𝑥 } ∈ 1stω ) | |
| 19 | 17 18 | ax-mp | ⊢ 𝒫 { 𝑥 } ∈ 1stω |
| 20 | 19 | rgenw | ⊢ ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ 1stω |
| 21 | dislly | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝒫 𝑋 ∈ Locally 1stω ↔ ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ 1stω ) ) | |
| 22 | 20 21 | mpbiri | ⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Locally 1stω ) |
| 23 | lly1stc | ⊢ Locally 1stω = 1stω | |
| 24 | 22 23 | eleqtrdi | ⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ 1stω ) |