This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A topology is its own basis. (Contributed by NM, 17-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | topbas | ⊢ ( 𝐽 ∈ Top → 𝐽 ∈ TopBases ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) | |
| 2 | 1 | 3expb | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) |
| 3 | simpr | ⊢ ( ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) | |
| 4 | ssid | ⊢ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) | |
| 5 | 3 4 | jctir | ⊢ ( ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → ( 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 6 | eleq2 | ⊢ ( 𝑤 = ( 𝑥 ∩ 𝑦 ) → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ) | |
| 7 | sseq1 | ⊢ ( 𝑤 = ( 𝑥 ∩ 𝑦 ) → ( 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ↔ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) ) | |
| 8 | 6 7 | anbi12d | ⊢ ( 𝑤 = ( 𝑥 ∩ 𝑦 ) → ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ↔ ( 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 9 | 8 | rspcev | ⊢ ( ( ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ∧ ( 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) ) → ∃ 𝑤 ∈ 𝐽 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 10 | 2 5 9 | syl2an2r | ⊢ ( ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → ∃ 𝑤 ∈ 𝐽 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 11 | 10 | exp31 | ⊢ ( 𝐽 ∈ Top → ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) → ∃ 𝑤 ∈ 𝐽 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) ) |
| 12 | 11 | ralrimdv | ⊢ ( 𝐽 ∈ Top → ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) → ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐽 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 13 | 12 | ralrimivv | ⊢ ( 𝐽 ∈ Top → ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐽 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 14 | isbasis2g | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ TopBases ↔ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐽 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) | |
| 15 | 13 14 | mpbird | ⊢ ( 𝐽 ∈ Top → 𝐽 ∈ TopBases ) |