This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A discrete space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dis1stc | |- ( X e. V -> ~P X e. 1stc ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnex | |- { x } e. _V |
|
| 2 | distop | |- ( { x } e. _V -> ~P { x } e. Top ) |
|
| 3 | 1 2 | ax-mp | |- ~P { x } e. Top |
| 4 | tgtop | |- ( ~P { x } e. Top -> ( topGen ` ~P { x } ) = ~P { x } ) |
|
| 5 | 3 4 | ax-mp | |- ( topGen ` ~P { x } ) = ~P { x } |
| 6 | topbas | |- ( ~P { x } e. Top -> ~P { x } e. TopBases ) |
|
| 7 | 3 6 | ax-mp | |- ~P { x } e. TopBases |
| 8 | snfi | |- { x } e. Fin |
|
| 9 | pwfi | |- ( { x } e. Fin <-> ~P { x } e. Fin ) |
|
| 10 | 8 9 | mpbi | |- ~P { x } e. Fin |
| 11 | isfinite | |- ( ~P { x } e. Fin <-> ~P { x } ~< _om ) |
|
| 12 | 10 11 | mpbi | |- ~P { x } ~< _om |
| 13 | sdomdom | |- ( ~P { x } ~< _om -> ~P { x } ~<_ _om ) |
|
| 14 | 12 13 | ax-mp | |- ~P { x } ~<_ _om |
| 15 | 2ndci | |- ( ( ~P { x } e. TopBases /\ ~P { x } ~<_ _om ) -> ( topGen ` ~P { x } ) e. 2ndc ) |
|
| 16 | 7 14 15 | mp2an | |- ( topGen ` ~P { x } ) e. 2ndc |
| 17 | 5 16 | eqeltrri | |- ~P { x } e. 2ndc |
| 18 | 2ndc1stc | |- ( ~P { x } e. 2ndc -> ~P { x } e. 1stc ) |
|
| 19 | 17 18 | ax-mp | |- ~P { x } e. 1stc |
| 20 | 19 | rgenw | |- A. x e. X ~P { x } e. 1stc |
| 21 | dislly | |- ( X e. V -> ( ~P X e. Locally 1stc <-> A. x e. X ~P { x } e. 1stc ) ) |
|
| 22 | 20 21 | mpbiri | |- ( X e. V -> ~P X e. Locally 1stc ) |
| 23 | lly1stc | |- Locally 1stc = 1stc |
|
| 24 | 22 23 | eleqtrdi | |- ( X e. V -> ~P X e. 1stc ) |