This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rexdif1en and dif1en . (Contributed by BTernaryTau, 18-Aug-2024) Generalize to all ordinals and add a sethood requirement to avoid ax-un . (Revised by BTernaryTau, 5-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dif1enlem | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝑀 ∈ On ) ∧ 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 ) → ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ≈ 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucidg | ⊢ ( 𝑀 ∈ On → 𝑀 ∈ suc 𝑀 ) | |
| 2 | dff1o3 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 ↔ ( 𝐹 : 𝐴 –onto→ suc 𝑀 ∧ Fun ◡ 𝐹 ) ) | |
| 3 | 2 | simprbi | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 → Fun ◡ 𝐹 ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ suc 𝑀 ) → Fun ◡ 𝐹 ) |
| 5 | f1ofo | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 → 𝐹 : 𝐴 –onto→ suc 𝑀 ) | |
| 6 | f1ofn | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 → 𝐹 Fn 𝐴 ) | |
| 7 | fnresdm | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) | |
| 8 | foeq1 | ⊢ ( ( 𝐹 ↾ 𝐴 ) = 𝐹 → ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ suc 𝑀 ↔ 𝐹 : 𝐴 –onto→ suc 𝑀 ) ) | |
| 9 | 6 7 8 | 3syl | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 → ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ suc 𝑀 ↔ 𝐹 : 𝐴 –onto→ suc 𝑀 ) ) |
| 10 | 5 9 | mpbird | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 → ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ suc 𝑀 ) |
| 11 | 10 | adantr | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ suc 𝑀 ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ suc 𝑀 ) |
| 12 | 6 | adantr | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ suc 𝑀 ) → 𝐹 Fn 𝐴 ) |
| 13 | f1ocnvdm | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ suc 𝑀 ) → ( ◡ 𝐹 ‘ 𝑀 ) ∈ 𝐴 ) | |
| 14 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ suc 𝑀 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑀 ) ) = 𝑀 ) | |
| 15 | snidg | ⊢ ( 𝑀 ∈ suc 𝑀 → 𝑀 ∈ { 𝑀 } ) | |
| 16 | 15 | adantl | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ suc 𝑀 ) → 𝑀 ∈ { 𝑀 } ) |
| 17 | 14 16 | eqeltrd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ suc 𝑀 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑀 ) ) ∈ { 𝑀 } ) |
| 18 | fressnfv | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( ◡ 𝐹 ‘ 𝑀 ) ∈ 𝐴 ) → ( ( 𝐹 ↾ { ( ◡ 𝐹 ‘ 𝑀 ) } ) : { ( ◡ 𝐹 ‘ 𝑀 ) } ⟶ { 𝑀 } ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑀 ) ) ∈ { 𝑀 } ) ) | |
| 19 | 18 | biimp3ar | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( ◡ 𝐹 ‘ 𝑀 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑀 ) ) ∈ { 𝑀 } ) → ( 𝐹 ↾ { ( ◡ 𝐹 ‘ 𝑀 ) } ) : { ( ◡ 𝐹 ‘ 𝑀 ) } ⟶ { 𝑀 } ) |
| 20 | 12 13 17 19 | syl3anc | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ suc 𝑀 ) → ( 𝐹 ↾ { ( ◡ 𝐹 ‘ 𝑀 ) } ) : { ( ◡ 𝐹 ‘ 𝑀 ) } ⟶ { 𝑀 } ) |
| 21 | disjsn | ⊢ ( ( 𝐴 ∩ { ( ◡ 𝐹 ‘ 𝑀 ) } ) = ∅ ↔ ¬ ( ◡ 𝐹 ‘ 𝑀 ) ∈ 𝐴 ) | |
| 22 | 21 | con2bii | ⊢ ( ( ◡ 𝐹 ‘ 𝑀 ) ∈ 𝐴 ↔ ¬ ( 𝐴 ∩ { ( ◡ 𝐹 ‘ 𝑀 ) } ) = ∅ ) |
| 23 | 13 22 | sylib | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ suc 𝑀 ) → ¬ ( 𝐴 ∩ { ( ◡ 𝐹 ‘ 𝑀 ) } ) = ∅ ) |
| 24 | fnresdisj | ⊢ ( 𝐹 Fn 𝐴 → ( ( 𝐴 ∩ { ( ◡ 𝐹 ‘ 𝑀 ) } ) = ∅ ↔ ( 𝐹 ↾ { ( ◡ 𝐹 ‘ 𝑀 ) } ) = ∅ ) ) | |
| 25 | 6 24 | syl | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 → ( ( 𝐴 ∩ { ( ◡ 𝐹 ‘ 𝑀 ) } ) = ∅ ↔ ( 𝐹 ↾ { ( ◡ 𝐹 ‘ 𝑀 ) } ) = ∅ ) ) |
| 26 | 25 | adantr | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ suc 𝑀 ) → ( ( 𝐴 ∩ { ( ◡ 𝐹 ‘ 𝑀 ) } ) = ∅ ↔ ( 𝐹 ↾ { ( ◡ 𝐹 ‘ 𝑀 ) } ) = ∅ ) ) |
| 27 | 23 26 | mtbid | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ suc 𝑀 ) → ¬ ( 𝐹 ↾ { ( ◡ 𝐹 ‘ 𝑀 ) } ) = ∅ ) |
| 28 | 27 | neqned | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ suc 𝑀 ) → ( 𝐹 ↾ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ≠ ∅ ) |
| 29 | foconst | ⊢ ( ( ( 𝐹 ↾ { ( ◡ 𝐹 ‘ 𝑀 ) } ) : { ( ◡ 𝐹 ‘ 𝑀 ) } ⟶ { 𝑀 } ∧ ( 𝐹 ↾ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ≠ ∅ ) → ( 𝐹 ↾ { ( ◡ 𝐹 ‘ 𝑀 ) } ) : { ( ◡ 𝐹 ‘ 𝑀 ) } –onto→ { 𝑀 } ) | |
| 30 | 20 28 29 | syl2anc | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ suc 𝑀 ) → ( 𝐹 ↾ { ( ◡ 𝐹 ‘ 𝑀 ) } ) : { ( ◡ 𝐹 ‘ 𝑀 ) } –onto→ { 𝑀 } ) |
| 31 | resdif | ⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ suc 𝑀 ∧ ( 𝐹 ↾ { ( ◡ 𝐹 ‘ 𝑀 ) } ) : { ( ◡ 𝐹 ‘ 𝑀 ) } –onto→ { 𝑀 } ) → ( 𝐹 ↾ ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ) : ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) –1-1-onto→ ( suc 𝑀 ∖ { 𝑀 } ) ) | |
| 32 | 4 11 30 31 | syl3anc | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ suc 𝑀 ) → ( 𝐹 ↾ ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ) : ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) –1-1-onto→ ( suc 𝑀 ∖ { 𝑀 } ) ) |
| 33 | 1 32 | sylan2 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ On ) → ( 𝐹 ↾ ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ) : ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) –1-1-onto→ ( suc 𝑀 ∖ { 𝑀 } ) ) |
| 34 | eloni | ⊢ ( 𝑀 ∈ On → Ord 𝑀 ) | |
| 35 | orddif | ⊢ ( Ord 𝑀 → 𝑀 = ( suc 𝑀 ∖ { 𝑀 } ) ) | |
| 36 | 34 35 | syl | ⊢ ( 𝑀 ∈ On → 𝑀 = ( suc 𝑀 ∖ { 𝑀 } ) ) |
| 37 | 36 | f1oeq3d | ⊢ ( 𝑀 ∈ On → ( ( 𝐹 ↾ ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ) : ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) –1-1-onto→ 𝑀 ↔ ( 𝐹 ↾ ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ) : ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) –1-1-onto→ ( suc 𝑀 ∖ { 𝑀 } ) ) ) |
| 38 | 37 | adantl | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ On ) → ( ( 𝐹 ↾ ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ) : ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) –1-1-onto→ 𝑀 ↔ ( 𝐹 ↾ ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ) : ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) –1-1-onto→ ( suc 𝑀 ∖ { 𝑀 } ) ) ) |
| 39 | 33 38 | mpbird | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ On ) → ( 𝐹 ↾ ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ) : ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) –1-1-onto→ 𝑀 ) |
| 40 | 39 | ancoms | ⊢ ( ( 𝑀 ∈ On ∧ 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 ) → ( 𝐹 ↾ ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ) : ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) –1-1-onto→ 𝑀 ) |
| 41 | 40 | 3ad2antl3 | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝑀 ∈ On ) ∧ 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 ) → ( 𝐹 ↾ ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ) : ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) –1-1-onto→ 𝑀 ) |
| 42 | difexg | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ∈ V ) | |
| 43 | resexg | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ↾ ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ) ∈ V ) | |
| 44 | f1oen4g | ⊢ ( ( ( ( 𝐹 ↾ ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ) ∈ V ∧ ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ∈ V ∧ 𝑀 ∈ On ) ∧ ( 𝐹 ↾ ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ) : ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) –1-1-onto→ 𝑀 ) → ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ≈ 𝑀 ) | |
| 45 | 43 44 | syl3anl1 | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ∈ V ∧ 𝑀 ∈ On ) ∧ ( 𝐹 ↾ ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ) : ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) –1-1-onto→ 𝑀 ) → ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ≈ 𝑀 ) |
| 46 | 42 45 | syl3anl2 | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝑀 ∈ On ) ∧ ( 𝐹 ↾ ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ) : ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) –1-1-onto→ 𝑀 ) → ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ≈ 𝑀 ) |
| 47 | 41 46 | syldan | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝑀 ∈ On ) ∧ 𝐹 : 𝐴 –1-1-onto→ suc 𝑀 ) → ( 𝐴 ∖ { ( ◡ 𝐹 ‘ 𝑀 ) } ) ≈ 𝑀 ) |