This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a set is equinumerous to a nonzero ordinal, then there exists an element in that set such that removing it leaves the set equinumerous to the predecessor of that ordinal. (Contributed by BTernaryTau, 26-Aug-2024) Generalize to all ordinals and avoid ax-un . (Revised by BTernaryTau, 5-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexdif1en | ⊢ ( ( 𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀 ) → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv | ⊢ ( 𝐴 ≈ suc 𝑀 → ( 𝐴 ∈ V ∧ suc 𝑀 ∈ V ) ) | |
| 2 | 1 | simpld | ⊢ ( 𝐴 ≈ suc 𝑀 → 𝐴 ∈ V ) |
| 3 | breng | ⊢ ( ( 𝐴 ∈ V ∧ suc 𝑀 ∈ V ) → ( 𝐴 ≈ suc 𝑀 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ) ) | |
| 4 | 1 3 | syl | ⊢ ( 𝐴 ≈ suc 𝑀 → ( 𝐴 ≈ suc 𝑀 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ) ) |
| 5 | 4 | ibi | ⊢ ( 𝐴 ≈ suc 𝑀 → ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ) |
| 6 | sucidg | ⊢ ( 𝑀 ∈ On → 𝑀 ∈ suc 𝑀 ) | |
| 7 | f1ocnvdm | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ suc 𝑀 ) → ( ◡ 𝑓 ‘ 𝑀 ) ∈ 𝐴 ) | |
| 8 | 7 | ancoms | ⊢ ( ( 𝑀 ∈ suc 𝑀 ∧ 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ) → ( ◡ 𝑓 ‘ 𝑀 ) ∈ 𝐴 ) |
| 9 | 6 8 | sylan | ⊢ ( ( 𝑀 ∈ On ∧ 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ) → ( ◡ 𝑓 ‘ 𝑀 ) ∈ 𝐴 ) |
| 10 | 9 | adantll | ⊢ ( ( ( 𝐴 ∈ V ∧ 𝑀 ∈ On ) ∧ 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ) → ( ◡ 𝑓 ‘ 𝑀 ) ∈ 𝐴 ) |
| 11 | vex | ⊢ 𝑓 ∈ V | |
| 12 | dif1enlem | ⊢ ( ( ( 𝑓 ∈ V ∧ 𝐴 ∈ V ∧ 𝑀 ∈ On ) ∧ 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ) → ( 𝐴 ∖ { ( ◡ 𝑓 ‘ 𝑀 ) } ) ≈ 𝑀 ) | |
| 13 | 11 12 | mp3anl1 | ⊢ ( ( ( 𝐴 ∈ V ∧ 𝑀 ∈ On ) ∧ 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ) → ( 𝐴 ∖ { ( ◡ 𝑓 ‘ 𝑀 ) } ) ≈ 𝑀 ) |
| 14 | sneq | ⊢ ( 𝑥 = ( ◡ 𝑓 ‘ 𝑀 ) → { 𝑥 } = { ( ◡ 𝑓 ‘ 𝑀 ) } ) | |
| 15 | 14 | difeq2d | ⊢ ( 𝑥 = ( ◡ 𝑓 ‘ 𝑀 ) → ( 𝐴 ∖ { 𝑥 } ) = ( 𝐴 ∖ { ( ◡ 𝑓 ‘ 𝑀 ) } ) ) |
| 16 | 15 | breq1d | ⊢ ( 𝑥 = ( ◡ 𝑓 ‘ 𝑀 ) → ( ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ↔ ( 𝐴 ∖ { ( ◡ 𝑓 ‘ 𝑀 ) } ) ≈ 𝑀 ) ) |
| 17 | 16 | rspcev | ⊢ ( ( ( ◡ 𝑓 ‘ 𝑀 ) ∈ 𝐴 ∧ ( 𝐴 ∖ { ( ◡ 𝑓 ‘ 𝑀 ) } ) ≈ 𝑀 ) → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ) |
| 18 | 10 13 17 | syl2anc | ⊢ ( ( ( 𝐴 ∈ V ∧ 𝑀 ∈ On ) ∧ 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ) → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ) |
| 19 | 18 | ex | ⊢ ( ( 𝐴 ∈ V ∧ 𝑀 ∈ On ) → ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ) ) |
| 20 | 19 | exlimdv | ⊢ ( ( 𝐴 ∈ V ∧ 𝑀 ∈ On ) → ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ) ) |
| 21 | 5 20 | syl5 | ⊢ ( ( 𝐴 ∈ V ∧ 𝑀 ∈ On ) → ( 𝐴 ≈ suc 𝑀 → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ) ) |
| 22 | 2 21 | sylan | ⊢ ( ( 𝐴 ≈ suc 𝑀 ∧ 𝑀 ∈ On ) → ( 𝐴 ≈ suc 𝑀 → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ) ) |
| 23 | 22 | ancoms | ⊢ ( ( 𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀 ) → ( 𝐴 ≈ suc 𝑀 → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ) ) |
| 24 | 23 | syldbl2 | ⊢ ( ( 𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀 ) → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ) |