This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a function restricted to a singleton. (Contributed by NM, 9-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fressnfv | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝐹 ↾ { 𝐵 } ) : { 𝐵 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq | ⊢ ( 𝑥 = 𝐵 → { 𝑥 } = { 𝐵 } ) | |
| 2 | reseq2 | ⊢ ( { 𝑥 } = { 𝐵 } → ( 𝐹 ↾ { 𝑥 } ) = ( 𝐹 ↾ { 𝐵 } ) ) | |
| 3 | 2 | feq1d | ⊢ ( { 𝑥 } = { 𝐵 } → ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ↾ { 𝐵 } ) : { 𝑥 } ⟶ 𝐶 ) ) |
| 4 | feq2 | ⊢ ( { 𝑥 } = { 𝐵 } → ( ( 𝐹 ↾ { 𝐵 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ↾ { 𝐵 } ) : { 𝐵 } ⟶ 𝐶 ) ) | |
| 5 | 3 4 | bitrd | ⊢ ( { 𝑥 } = { 𝐵 } → ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ↾ { 𝐵 } ) : { 𝐵 } ⟶ 𝐶 ) ) |
| 6 | 1 5 | syl | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ↾ { 𝐵 } ) : { 𝐵 } ⟶ 𝐶 ) ) |
| 7 | fveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ↔ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ) ) |
| 9 | 6 8 | bibi12d | ⊢ ( 𝑥 = 𝐵 → ( ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ↔ ( ( 𝐹 ↾ { 𝐵 } ) : { 𝐵 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ) ) ) |
| 10 | 9 | imbi2d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 Fn 𝐴 → ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) ↔ ( 𝐹 Fn 𝐴 → ( ( 𝐹 ↾ { 𝐵 } ) : { 𝐵 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ) ) ) ) |
| 11 | fnressn | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } ) | |
| 12 | vsnid | ⊢ 𝑥 ∈ { 𝑥 } | |
| 13 | fvres | ⊢ ( 𝑥 ∈ { 𝑥 } → ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 14 | 12 13 | ax-mp | ⊢ ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) |
| 15 | 14 | opeq2i | ⊢ 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 |
| 16 | 15 | sneqi | ⊢ { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } = { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } |
| 17 | 16 | eqeq2i | ⊢ ( ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } ↔ ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } ) |
| 18 | vex | ⊢ 𝑥 ∈ V | |
| 19 | 18 | fsn2 | ⊢ ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } ) ) |
| 20 | iba | ⊢ ( ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } → ( ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) ∈ 𝐶 ↔ ( ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } ) ) ) | |
| 21 | 14 | eleq1i | ⊢ ( ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) ∈ 𝐶 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) |
| 22 | 20 21 | bitr3di | ⊢ ( ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } → ( ( ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 23 | 19 22 | bitrid | ⊢ ( ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } → ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 24 | 17 23 | sylbir | ⊢ ( ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } → ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 25 | 11 24 | syl | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 26 | 25 | expcom | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝐹 Fn 𝐴 → ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) ) |
| 27 | 10 26 | vtoclga | ⊢ ( 𝐵 ∈ 𝐴 → ( 𝐹 Fn 𝐴 → ( ( 𝐹 ↾ { 𝐵 } ) : { 𝐵 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ) ) ) |
| 28 | 27 | impcom | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝐹 ↾ { 𝐵 } ) : { 𝐵 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ) ) |