This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain and range of a one-to-one, onto set function are equinumerous. This variation of f1oeng does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Union. (Contributed by BTernaryTau, 7-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1oen4g | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) → 𝐴 ≈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ↔ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) ) | |
| 2 | 1 | spcegv | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) |
| 3 | 2 | imp | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) → ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) |
| 4 | 3 | 3ad2antl1 | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) → ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) |
| 5 | breng | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ≈ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) | |
| 6 | 5 | 3adant1 | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ≈ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) → ( 𝐴 ≈ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) |
| 8 | 4 7 | mpbird | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) → 𝐴 ≈ 𝐵 ) |