This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero constant function is onto. (Contributed by NM, 12-Jan-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | foconst | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ 𝐹 ≠ ∅ ) → 𝐹 : 𝐴 –onto→ { 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frel | ⊢ ( 𝐹 : 𝐴 ⟶ { 𝐵 } → Rel 𝐹 ) | |
| 2 | relrn0 | ⊢ ( Rel 𝐹 → ( 𝐹 = ∅ ↔ ran 𝐹 = ∅ ) ) | |
| 3 | 2 | necon3abid | ⊢ ( Rel 𝐹 → ( 𝐹 ≠ ∅ ↔ ¬ ran 𝐹 = ∅ ) ) |
| 4 | 1 3 | syl | ⊢ ( 𝐹 : 𝐴 ⟶ { 𝐵 } → ( 𝐹 ≠ ∅ ↔ ¬ ran 𝐹 = ∅ ) ) |
| 5 | frn | ⊢ ( 𝐹 : 𝐴 ⟶ { 𝐵 } → ran 𝐹 ⊆ { 𝐵 } ) | |
| 6 | sssn | ⊢ ( ran 𝐹 ⊆ { 𝐵 } ↔ ( ran 𝐹 = ∅ ∨ ran 𝐹 = { 𝐵 } ) ) | |
| 7 | 5 6 | sylib | ⊢ ( 𝐹 : 𝐴 ⟶ { 𝐵 } → ( ran 𝐹 = ∅ ∨ ran 𝐹 = { 𝐵 } ) ) |
| 8 | 7 | ord | ⊢ ( 𝐹 : 𝐴 ⟶ { 𝐵 } → ( ¬ ran 𝐹 = ∅ → ran 𝐹 = { 𝐵 } ) ) |
| 9 | 4 8 | sylbid | ⊢ ( 𝐹 : 𝐴 ⟶ { 𝐵 } → ( 𝐹 ≠ ∅ → ran 𝐹 = { 𝐵 } ) ) |
| 10 | 9 | imdistani | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ 𝐹 ≠ ∅ ) → ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ran 𝐹 = { 𝐵 } ) ) |
| 11 | dffo2 | ⊢ ( 𝐹 : 𝐴 –onto→ { 𝐵 } ↔ ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ran 𝐹 = { 𝐵 } ) ) | |
| 12 | 10 11 | sylibr | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ 𝐹 ≠ ∅ ) → 𝐹 : 𝐴 –onto→ { 𝐵 } ) |