This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rexdif1en and dif1en . (Contributed by BTernaryTau, 18-Aug-2024) Generalize to all ordinals and add a sethood requirement to avoid ax-un . (Revised by BTernaryTau, 5-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dif1enlem | |- ( ( ( F e. V /\ A e. W /\ M e. On ) /\ F : A -1-1-onto-> suc M ) -> ( A \ { ( `' F ` M ) } ) ~~ M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucidg | |- ( M e. On -> M e. suc M ) |
|
| 2 | dff1o3 | |- ( F : A -1-1-onto-> suc M <-> ( F : A -onto-> suc M /\ Fun `' F ) ) |
|
| 3 | 2 | simprbi | |- ( F : A -1-1-onto-> suc M -> Fun `' F ) |
| 4 | 3 | adantr | |- ( ( F : A -1-1-onto-> suc M /\ M e. suc M ) -> Fun `' F ) |
| 5 | f1ofo | |- ( F : A -1-1-onto-> suc M -> F : A -onto-> suc M ) |
|
| 6 | f1ofn | |- ( F : A -1-1-onto-> suc M -> F Fn A ) |
|
| 7 | fnresdm | |- ( F Fn A -> ( F |` A ) = F ) |
|
| 8 | foeq1 | |- ( ( F |` A ) = F -> ( ( F |` A ) : A -onto-> suc M <-> F : A -onto-> suc M ) ) |
|
| 9 | 6 7 8 | 3syl | |- ( F : A -1-1-onto-> suc M -> ( ( F |` A ) : A -onto-> suc M <-> F : A -onto-> suc M ) ) |
| 10 | 5 9 | mpbird | |- ( F : A -1-1-onto-> suc M -> ( F |` A ) : A -onto-> suc M ) |
| 11 | 10 | adantr | |- ( ( F : A -1-1-onto-> suc M /\ M e. suc M ) -> ( F |` A ) : A -onto-> suc M ) |
| 12 | 6 | adantr | |- ( ( F : A -1-1-onto-> suc M /\ M e. suc M ) -> F Fn A ) |
| 13 | f1ocnvdm | |- ( ( F : A -1-1-onto-> suc M /\ M e. suc M ) -> ( `' F ` M ) e. A ) |
|
| 14 | f1ocnvfv2 | |- ( ( F : A -1-1-onto-> suc M /\ M e. suc M ) -> ( F ` ( `' F ` M ) ) = M ) |
|
| 15 | snidg | |- ( M e. suc M -> M e. { M } ) |
|
| 16 | 15 | adantl | |- ( ( F : A -1-1-onto-> suc M /\ M e. suc M ) -> M e. { M } ) |
| 17 | 14 16 | eqeltrd | |- ( ( F : A -1-1-onto-> suc M /\ M e. suc M ) -> ( F ` ( `' F ` M ) ) e. { M } ) |
| 18 | fressnfv | |- ( ( F Fn A /\ ( `' F ` M ) e. A ) -> ( ( F |` { ( `' F ` M ) } ) : { ( `' F ` M ) } --> { M } <-> ( F ` ( `' F ` M ) ) e. { M } ) ) |
|
| 19 | 18 | biimp3ar | |- ( ( F Fn A /\ ( `' F ` M ) e. A /\ ( F ` ( `' F ` M ) ) e. { M } ) -> ( F |` { ( `' F ` M ) } ) : { ( `' F ` M ) } --> { M } ) |
| 20 | 12 13 17 19 | syl3anc | |- ( ( F : A -1-1-onto-> suc M /\ M e. suc M ) -> ( F |` { ( `' F ` M ) } ) : { ( `' F ` M ) } --> { M } ) |
| 21 | disjsn | |- ( ( A i^i { ( `' F ` M ) } ) = (/) <-> -. ( `' F ` M ) e. A ) |
|
| 22 | 21 | con2bii | |- ( ( `' F ` M ) e. A <-> -. ( A i^i { ( `' F ` M ) } ) = (/) ) |
| 23 | 13 22 | sylib | |- ( ( F : A -1-1-onto-> suc M /\ M e. suc M ) -> -. ( A i^i { ( `' F ` M ) } ) = (/) ) |
| 24 | fnresdisj | |- ( F Fn A -> ( ( A i^i { ( `' F ` M ) } ) = (/) <-> ( F |` { ( `' F ` M ) } ) = (/) ) ) |
|
| 25 | 6 24 | syl | |- ( F : A -1-1-onto-> suc M -> ( ( A i^i { ( `' F ` M ) } ) = (/) <-> ( F |` { ( `' F ` M ) } ) = (/) ) ) |
| 26 | 25 | adantr | |- ( ( F : A -1-1-onto-> suc M /\ M e. suc M ) -> ( ( A i^i { ( `' F ` M ) } ) = (/) <-> ( F |` { ( `' F ` M ) } ) = (/) ) ) |
| 27 | 23 26 | mtbid | |- ( ( F : A -1-1-onto-> suc M /\ M e. suc M ) -> -. ( F |` { ( `' F ` M ) } ) = (/) ) |
| 28 | 27 | neqned | |- ( ( F : A -1-1-onto-> suc M /\ M e. suc M ) -> ( F |` { ( `' F ` M ) } ) =/= (/) ) |
| 29 | foconst | |- ( ( ( F |` { ( `' F ` M ) } ) : { ( `' F ` M ) } --> { M } /\ ( F |` { ( `' F ` M ) } ) =/= (/) ) -> ( F |` { ( `' F ` M ) } ) : { ( `' F ` M ) } -onto-> { M } ) |
|
| 30 | 20 28 29 | syl2anc | |- ( ( F : A -1-1-onto-> suc M /\ M e. suc M ) -> ( F |` { ( `' F ` M ) } ) : { ( `' F ` M ) } -onto-> { M } ) |
| 31 | resdif | |- ( ( Fun `' F /\ ( F |` A ) : A -onto-> suc M /\ ( F |` { ( `' F ` M ) } ) : { ( `' F ` M ) } -onto-> { M } ) -> ( F |` ( A \ { ( `' F ` M ) } ) ) : ( A \ { ( `' F ` M ) } ) -1-1-onto-> ( suc M \ { M } ) ) |
|
| 32 | 4 11 30 31 | syl3anc | |- ( ( F : A -1-1-onto-> suc M /\ M e. suc M ) -> ( F |` ( A \ { ( `' F ` M ) } ) ) : ( A \ { ( `' F ` M ) } ) -1-1-onto-> ( suc M \ { M } ) ) |
| 33 | 1 32 | sylan2 | |- ( ( F : A -1-1-onto-> suc M /\ M e. On ) -> ( F |` ( A \ { ( `' F ` M ) } ) ) : ( A \ { ( `' F ` M ) } ) -1-1-onto-> ( suc M \ { M } ) ) |
| 34 | eloni | |- ( M e. On -> Ord M ) |
|
| 35 | orddif | |- ( Ord M -> M = ( suc M \ { M } ) ) |
|
| 36 | 34 35 | syl | |- ( M e. On -> M = ( suc M \ { M } ) ) |
| 37 | 36 | f1oeq3d | |- ( M e. On -> ( ( F |` ( A \ { ( `' F ` M ) } ) ) : ( A \ { ( `' F ` M ) } ) -1-1-onto-> M <-> ( F |` ( A \ { ( `' F ` M ) } ) ) : ( A \ { ( `' F ` M ) } ) -1-1-onto-> ( suc M \ { M } ) ) ) |
| 38 | 37 | adantl | |- ( ( F : A -1-1-onto-> suc M /\ M e. On ) -> ( ( F |` ( A \ { ( `' F ` M ) } ) ) : ( A \ { ( `' F ` M ) } ) -1-1-onto-> M <-> ( F |` ( A \ { ( `' F ` M ) } ) ) : ( A \ { ( `' F ` M ) } ) -1-1-onto-> ( suc M \ { M } ) ) ) |
| 39 | 33 38 | mpbird | |- ( ( F : A -1-1-onto-> suc M /\ M e. On ) -> ( F |` ( A \ { ( `' F ` M ) } ) ) : ( A \ { ( `' F ` M ) } ) -1-1-onto-> M ) |
| 40 | 39 | ancoms | |- ( ( M e. On /\ F : A -1-1-onto-> suc M ) -> ( F |` ( A \ { ( `' F ` M ) } ) ) : ( A \ { ( `' F ` M ) } ) -1-1-onto-> M ) |
| 41 | 40 | 3ad2antl3 | |- ( ( ( F e. V /\ A e. W /\ M e. On ) /\ F : A -1-1-onto-> suc M ) -> ( F |` ( A \ { ( `' F ` M ) } ) ) : ( A \ { ( `' F ` M ) } ) -1-1-onto-> M ) |
| 42 | difexg | |- ( A e. W -> ( A \ { ( `' F ` M ) } ) e. _V ) |
|
| 43 | resexg | |- ( F e. V -> ( F |` ( A \ { ( `' F ` M ) } ) ) e. _V ) |
|
| 44 | f1oen4g | |- ( ( ( ( F |` ( A \ { ( `' F ` M ) } ) ) e. _V /\ ( A \ { ( `' F ` M ) } ) e. _V /\ M e. On ) /\ ( F |` ( A \ { ( `' F ` M ) } ) ) : ( A \ { ( `' F ` M ) } ) -1-1-onto-> M ) -> ( A \ { ( `' F ` M ) } ) ~~ M ) |
|
| 45 | 43 44 | syl3anl1 | |- ( ( ( F e. V /\ ( A \ { ( `' F ` M ) } ) e. _V /\ M e. On ) /\ ( F |` ( A \ { ( `' F ` M ) } ) ) : ( A \ { ( `' F ` M ) } ) -1-1-onto-> M ) -> ( A \ { ( `' F ` M ) } ) ~~ M ) |
| 46 | 42 45 | syl3anl2 | |- ( ( ( F e. V /\ A e. W /\ M e. On ) /\ ( F |` ( A \ { ( `' F ` M ) } ) ) : ( A \ { ( `' F ` M ) } ) -1-1-onto-> M ) -> ( A \ { ( `' F ` M ) } ) ~~ M ) |
| 47 | 41 46 | syldan | |- ( ( ( F e. V /\ A e. W /\ M e. On ) /\ F : A -1-1-onto-> suc M ) -> ( A \ { ( `' F ` M ) } ) ~~ M ) |