This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a set A is equinumerous to the successor of an ordinal M , then A with an element removed is equinumerous to M . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Stefan O'Rear, 16-Aug-2015) Avoid ax-pow . (Revised by BTernaryTau, 26-Aug-2024) Generalize to all ordinals. (Revised by BTernaryTau, 6-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dif1en | ⊢ ( ( 𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) → 𝐴 ≈ suc 𝑀 ) | |
| 2 | encv | ⊢ ( 𝐴 ≈ suc 𝑀 → ( 𝐴 ∈ V ∧ suc 𝑀 ∈ V ) ) | |
| 3 | 2 | simpld | ⊢ ( 𝐴 ≈ suc 𝑀 → 𝐴 ∈ V ) |
| 4 | 3 | 3anim1i | ⊢ ( ( 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) → ( 𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) |
| 5 | bren | ⊢ ( 𝐴 ≈ suc 𝑀 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ) | |
| 6 | sucidg | ⊢ ( 𝑀 ∈ On → 𝑀 ∈ suc 𝑀 ) | |
| 7 | f1ocnvdm | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ suc 𝑀 ) → ( ◡ 𝑓 ‘ 𝑀 ) ∈ 𝐴 ) | |
| 8 | 7 | 3adant2 | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ suc 𝑀 ) → ( ◡ 𝑓 ‘ 𝑀 ) ∈ 𝐴 ) |
| 9 | f1ofvswap | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑀 ) ∈ 𝐴 ) → ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑀 ) ) 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) : 𝐴 –1-1-onto→ suc 𝑀 ) | |
| 10 | 8 9 | syld3an3 | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ suc 𝑀 ) → ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑀 ) ) 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) : 𝐴 –1-1-onto→ suc 𝑀 ) |
| 11 | f1ocnvfv2 | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ suc 𝑀 ) → ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑀 ) ) = 𝑀 ) | |
| 12 | 11 | opeq2d | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ suc 𝑀 ) → 〈 𝑋 , ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑀 ) ) 〉 = 〈 𝑋 , 𝑀 〉 ) |
| 13 | 12 | preq1d | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ suc 𝑀 ) → { 〈 𝑋 , ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑀 ) ) 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } = { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) |
| 14 | 13 | uneq2d | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ suc 𝑀 ) → ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑀 ) ) 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) = ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) ) |
| 15 | 14 | f1oeq1d | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑀 ∈ suc 𝑀 ) → ( ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑀 ) ) 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) : 𝐴 –1-1-onto→ suc 𝑀 ↔ ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) : 𝐴 –1-1-onto→ suc 𝑀 ) ) |
| 16 | 15 | 3adant2 | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ suc 𝑀 ) → ( ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑀 ) ) 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) : 𝐴 –1-1-onto→ suc 𝑀 ↔ ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) : 𝐴 –1-1-onto→ suc 𝑀 ) ) |
| 17 | 10 16 | mpbid | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ suc 𝑀 ) → ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) : 𝐴 –1-1-onto→ suc 𝑀 ) |
| 18 | 6 17 | syl3an3 | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) → ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) : 𝐴 –1-1-onto→ suc 𝑀 ) |
| 19 | 18 | 3adant3r1 | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ ( 𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) → ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) : 𝐴 –1-1-onto→ suc 𝑀 ) |
| 20 | f1ofun | ⊢ ( ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) : 𝐴 –1-1-onto→ suc 𝑀 → Fun ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) ) | |
| 21 | opex | ⊢ 〈 𝑋 , 𝑀 〉 ∈ V | |
| 22 | 21 | prid1 | ⊢ 〈 𝑋 , 𝑀 〉 ∈ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } |
| 23 | elun2 | ⊢ ( 〈 𝑋 , 𝑀 〉 ∈ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } → 〈 𝑋 , 𝑀 〉 ∈ ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) ) | |
| 24 | 22 23 | ax-mp | ⊢ 〈 𝑋 , 𝑀 〉 ∈ ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) |
| 25 | funopfv | ⊢ ( Fun ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) → ( 〈 𝑋 , 𝑀 〉 ∈ ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) → ( ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) ‘ 𝑋 ) = 𝑀 ) ) | |
| 26 | 24 25 | mpi | ⊢ ( Fun ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) → ( ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) ‘ 𝑋 ) = 𝑀 ) |
| 27 | 19 20 26 | 3syl | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ ( 𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) → ( ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) ‘ 𝑋 ) = 𝑀 ) |
| 28 | simpr2 | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ ( 𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) → 𝑋 ∈ 𝐴 ) | |
| 29 | f1ocnvfv | ⊢ ( ( ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) → ( ( ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) ‘ 𝑋 ) = 𝑀 → ( ◡ ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) ‘ 𝑀 ) = 𝑋 ) ) | |
| 30 | 19 28 29 | syl2anc | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ ( 𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) → ( ( ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) ‘ 𝑋 ) = 𝑀 → ( ◡ ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) ‘ 𝑀 ) = 𝑋 ) ) |
| 31 | 27 30 | mpd | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ ( 𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) → ( ◡ ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) ‘ 𝑀 ) = 𝑋 ) |
| 32 | 31 | sneqd | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ ( 𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) → { ( ◡ ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) ‘ 𝑀 ) } = { 𝑋 } ) |
| 33 | 32 | difeq2d | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ ( 𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) → ( 𝐴 ∖ { ( ◡ ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) ‘ 𝑀 ) } ) = ( 𝐴 ∖ { 𝑋 } ) ) |
| 34 | simpr1 | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ ( 𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) → 𝐴 ∈ V ) | |
| 35 | 3simpc | ⊢ ( ( 𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) → ( 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) | |
| 36 | 35 | anim2i | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ ( 𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) → ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) ) |
| 37 | 3anass | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ↔ ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) ) | |
| 38 | 36 37 | sylibr | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ ( 𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) → ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) |
| 39 | 34 38 | jca | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ ( 𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) → ( 𝐴 ∈ V ∧ ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) ) |
| 40 | simpl | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) → 𝐴 ∈ V ) | |
| 41 | simpr3 | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) → 𝑀 ∈ On ) | |
| 42 | 40 41 | jca | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) → ( 𝐴 ∈ V ∧ 𝑀 ∈ On ) ) |
| 43 | simpr | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) → ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) | |
| 44 | 42 43 | jca | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) → ( ( 𝐴 ∈ V ∧ 𝑀 ∈ On ) ∧ ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) ) |
| 45 | vex | ⊢ 𝑓 ∈ V | |
| 46 | 45 | resex | ⊢ ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∈ V |
| 47 | prex | ⊢ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ∈ V | |
| 48 | 46 47 | unex | ⊢ ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) ∈ V |
| 49 | dif1enlem | ⊢ ( ( ( ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) ∈ V ∧ 𝐴 ∈ V ∧ 𝑀 ∈ On ) ∧ ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) : 𝐴 –1-1-onto→ suc 𝑀 ) → ( 𝐴 ∖ { ( ◡ ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) ‘ 𝑀 ) } ) ≈ 𝑀 ) | |
| 50 | 48 49 | mp3anl1 | ⊢ ( ( ( 𝐴 ∈ V ∧ 𝑀 ∈ On ) ∧ ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) : 𝐴 –1-1-onto→ suc 𝑀 ) → ( 𝐴 ∖ { ( ◡ ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) ‘ 𝑀 ) } ) ≈ 𝑀 ) |
| 51 | 18 50 | sylan2 | ⊢ ( ( ( 𝐴 ∈ V ∧ 𝑀 ∈ On ) ∧ ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) → ( 𝐴 ∖ { ( ◡ ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) ‘ 𝑀 ) } ) ≈ 𝑀 ) |
| 52 | 39 44 51 | 3syl | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ ( 𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) → ( 𝐴 ∖ { ( ◡ ( ( 𝑓 ↾ ( 𝐴 ∖ { 𝑋 , ( ◡ 𝑓 ‘ 𝑀 ) } ) ) ∪ { 〈 𝑋 , 𝑀 〉 , 〈 ( ◡ 𝑓 ‘ 𝑀 ) , ( 𝑓 ‘ 𝑋 ) 〉 } ) ‘ 𝑀 ) } ) ≈ 𝑀 ) |
| 53 | 33 52 | eqbrtrrd | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 ∧ ( 𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) ) → ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑀 ) |
| 54 | 53 | ex | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 → ( ( 𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) → ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑀 ) ) |
| 55 | 54 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ suc 𝑀 → ( ( 𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) → ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑀 ) ) |
| 56 | 5 55 | sylbi | ⊢ ( 𝐴 ≈ suc 𝑀 → ( ( 𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) → ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑀 ) ) |
| 57 | 1 4 56 | sylc | ⊢ ( ( 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On ) → ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑀 ) |
| 58 | 57 | 3comr | ⊢ ( ( 𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑀 ) |