This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Quantifier-free definition of a partial ordering. (Contributed by Scott Fenton, 22-Feb-2013) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfpo2 | ⊢ ( 𝑅 Po 𝐴 ↔ ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | po0 | ⊢ 𝑅 Po ∅ | |
| 2 | res0 | ⊢ ( I ↾ ∅ ) = ∅ | |
| 3 | 2 | ineq2i | ⊢ ( 𝑅 ∩ ( I ↾ ∅ ) ) = ( 𝑅 ∩ ∅ ) |
| 4 | in0 | ⊢ ( 𝑅 ∩ ∅ ) = ∅ | |
| 5 | 3 4 | eqtri | ⊢ ( 𝑅 ∩ ( I ↾ ∅ ) ) = ∅ |
| 6 | xp0 | ⊢ ( 𝐴 × ∅ ) = ∅ | |
| 7 | 6 | ineq2i | ⊢ ( 𝑅 ∩ ( 𝐴 × ∅ ) ) = ( 𝑅 ∩ ∅ ) |
| 8 | 7 4 | eqtri | ⊢ ( 𝑅 ∩ ( 𝐴 × ∅ ) ) = ∅ |
| 9 | 8 | coeq2i | ⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × ∅ ) ) ) = ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ∅ ) |
| 10 | co02 | ⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ∅ ) = ∅ | |
| 11 | 9 10 | eqtri | ⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × ∅ ) ) ) = ∅ |
| 12 | 0ss | ⊢ ∅ ⊆ 𝑅 | |
| 13 | 11 12 | eqsstri | ⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × ∅ ) ) ) ⊆ 𝑅 |
| 14 | 5 13 | pm3.2i | ⊢ ( ( 𝑅 ∩ ( I ↾ ∅ ) ) = ∅ ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × ∅ ) ) ) ⊆ 𝑅 ) |
| 15 | 1 14 | 2th | ⊢ ( 𝑅 Po ∅ ↔ ( ( 𝑅 ∩ ( I ↾ ∅ ) ) = ∅ ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × ∅ ) ) ) ⊆ 𝑅 ) ) |
| 16 | poeq2 | ⊢ ( 𝐴 = ∅ → ( 𝑅 Po 𝐴 ↔ 𝑅 Po ∅ ) ) | |
| 17 | reseq2 | ⊢ ( 𝐴 = ∅ → ( I ↾ 𝐴 ) = ( I ↾ ∅ ) ) | |
| 18 | 17 | ineq2d | ⊢ ( 𝐴 = ∅ → ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ( 𝑅 ∩ ( I ↾ ∅ ) ) ) |
| 19 | 18 | eqeq1d | ⊢ ( 𝐴 = ∅ → ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ↔ ( 𝑅 ∩ ( I ↾ ∅ ) ) = ∅ ) ) |
| 20 | xpeq2 | ⊢ ( 𝐴 = ∅ → ( 𝐴 × 𝐴 ) = ( 𝐴 × ∅ ) ) | |
| 21 | 20 | ineq2d | ⊢ ( 𝐴 = ∅ → ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = ( 𝑅 ∩ ( 𝐴 × ∅ ) ) ) |
| 22 | 21 | coeq2d | ⊢ ( 𝐴 = ∅ → ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × ∅ ) ) ) ) |
| 23 | 22 | sseq1d | ⊢ ( 𝐴 = ∅ → ( ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ↔ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × ∅ ) ) ) ⊆ 𝑅 ) ) |
| 24 | 19 23 | anbi12d | ⊢ ( 𝐴 = ∅ → ( ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ) ↔ ( ( 𝑅 ∩ ( I ↾ ∅ ) ) = ∅ ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × ∅ ) ) ) ⊆ 𝑅 ) ) ) |
| 25 | 16 24 | bibi12d | ⊢ ( 𝐴 = ∅ → ( ( 𝑅 Po 𝐴 ↔ ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ) ) ↔ ( 𝑅 Po ∅ ↔ ( ( 𝑅 ∩ ( I ↾ ∅ ) ) = ∅ ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × ∅ ) ) ) ⊆ 𝑅 ) ) ) ) |
| 26 | 15 25 | mpbiri | ⊢ ( 𝐴 = ∅ → ( 𝑅 Po 𝐴 ↔ ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ) ) ) |
| 27 | r19.28zv | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ( ¬ 𝑥 𝑅 𝑥 ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) ) | |
| 28 | 27 | ralbidv | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) ) |
| 29 | r19.28zv | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ( ¬ 𝑥 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) ) | |
| 30 | 28 29 | bitrd | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ( ¬ 𝑥 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) ) |
| 31 | 30 | ralbidv | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) ) |
| 32 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) | |
| 33 | 31 32 | bitrdi | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) ) |
| 34 | df-po | ⊢ ( 𝑅 Po 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) | |
| 35 | disj | ⊢ ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ↔ ∀ 𝑤 ∈ 𝑅 ¬ 𝑤 ∈ ( I ↾ 𝐴 ) ) | |
| 36 | df-ral | ⊢ ( ∀ 𝑤 ∈ 𝑅 ¬ 𝑤 ∈ ( I ↾ 𝐴 ) ↔ ∀ 𝑤 ( 𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴 ) ) ) | |
| 37 | opex | ⊢ 〈 𝑥 , 𝑥 〉 ∈ V | |
| 38 | eleq1 | ⊢ ( 𝑤 = 〈 𝑥 , 𝑥 〉 → ( 𝑤 ∈ 𝑅 ↔ 〈 𝑥 , 𝑥 〉 ∈ 𝑅 ) ) | |
| 39 | df-br | ⊢ ( 𝑥 𝑅 𝑥 ↔ 〈 𝑥 , 𝑥 〉 ∈ 𝑅 ) | |
| 40 | 38 39 | bitr4di | ⊢ ( 𝑤 = 〈 𝑥 , 𝑥 〉 → ( 𝑤 ∈ 𝑅 ↔ 𝑥 𝑅 𝑥 ) ) |
| 41 | eleq1 | ⊢ ( 𝑤 = 〈 𝑥 , 𝑥 〉 → ( 𝑤 ∈ ( I ↾ 𝐴 ) ↔ 〈 𝑥 , 𝑥 〉 ∈ ( I ↾ 𝐴 ) ) ) | |
| 42 | opelidres | ⊢ ( 𝑥 ∈ V → ( 〈 𝑥 , 𝑥 〉 ∈ ( I ↾ 𝐴 ) ↔ 𝑥 ∈ 𝐴 ) ) | |
| 43 | 42 | elv | ⊢ ( 〈 𝑥 , 𝑥 〉 ∈ ( I ↾ 𝐴 ) ↔ 𝑥 ∈ 𝐴 ) |
| 44 | 41 43 | bitrdi | ⊢ ( 𝑤 = 〈 𝑥 , 𝑥 〉 → ( 𝑤 ∈ ( I ↾ 𝐴 ) ↔ 𝑥 ∈ 𝐴 ) ) |
| 45 | 44 | notbid | ⊢ ( 𝑤 = 〈 𝑥 , 𝑥 〉 → ( ¬ 𝑤 ∈ ( I ↾ 𝐴 ) ↔ ¬ 𝑥 ∈ 𝐴 ) ) |
| 46 | 40 45 | imbi12d | ⊢ ( 𝑤 = 〈 𝑥 , 𝑥 〉 → ( ( 𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴 ) ) ↔ ( 𝑥 𝑅 𝑥 → ¬ 𝑥 ∈ 𝐴 ) ) ) |
| 47 | 37 46 | spcv | ⊢ ( ∀ 𝑤 ( 𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴 ) ) → ( 𝑥 𝑅 𝑥 → ¬ 𝑥 ∈ 𝐴 ) ) |
| 48 | 47 | con2d | ⊢ ( ∀ 𝑤 ( 𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴 ) ) → ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) ) |
| 49 | 48 | alrimiv | ⊢ ( ∀ 𝑤 ( 𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴 ) ) → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) ) |
| 50 | relres | ⊢ Rel ( I ↾ 𝐴 ) | |
| 51 | elrel | ⊢ ( ( Rel ( I ↾ 𝐴 ) ∧ 𝑤 ∈ ( I ↾ 𝐴 ) ) → ∃ 𝑦 ∃ 𝑧 𝑤 = 〈 𝑦 , 𝑧 〉 ) | |
| 52 | 50 51 | mpan | ⊢ ( 𝑤 ∈ ( I ↾ 𝐴 ) → ∃ 𝑦 ∃ 𝑧 𝑤 = 〈 𝑦 , 𝑧 〉 ) |
| 53 | 52 | ancri | ⊢ ( 𝑤 ∈ ( I ↾ 𝐴 ) → ( ∃ 𝑦 ∃ 𝑧 𝑤 = 〈 𝑦 , 𝑧 〉 ∧ 𝑤 ∈ ( I ↾ 𝐴 ) ) ) |
| 54 | eleq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 55 | breq12 | ⊢ ( ( 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) → ( 𝑥 𝑅 𝑥 ↔ 𝑦 𝑅 𝑦 ) ) | |
| 56 | 55 | anidms | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑥 ↔ 𝑦 𝑅 𝑦 ) ) |
| 57 | 56 | notbid | ⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 𝑦 ) ) |
| 58 | 54 57 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) ↔ ( 𝑦 ∈ 𝐴 → ¬ 𝑦 𝑅 𝑦 ) ) ) |
| 59 | 58 | spvv | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) → ( 𝑦 ∈ 𝐴 → ¬ 𝑦 𝑅 𝑦 ) ) |
| 60 | breq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 𝑅 𝑦 ↔ 𝑦 𝑅 𝑧 ) ) | |
| 61 | 60 | notbid | ⊢ ( 𝑦 = 𝑧 → ( ¬ 𝑦 𝑅 𝑦 ↔ ¬ 𝑦 𝑅 𝑧 ) ) |
| 62 | 61 | imbi2d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 ∈ 𝐴 → ¬ 𝑦 𝑅 𝑦 ) ↔ ( 𝑦 ∈ 𝐴 → ¬ 𝑦 𝑅 𝑧 ) ) ) |
| 63 | 62 | biimpcd | ⊢ ( ( 𝑦 ∈ 𝐴 → ¬ 𝑦 𝑅 𝑦 ) → ( 𝑦 = 𝑧 → ( 𝑦 ∈ 𝐴 → ¬ 𝑦 𝑅 𝑧 ) ) ) |
| 64 | 63 | impcomd | ⊢ ( ( 𝑦 ∈ 𝐴 → ¬ 𝑦 𝑅 𝑦 ) → ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 = 𝑧 ) → ¬ 𝑦 𝑅 𝑧 ) ) |
| 65 | 59 64 | syl | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) → ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 = 𝑧 ) → ¬ 𝑦 𝑅 𝑧 ) ) |
| 66 | eleq1 | ⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( 𝑤 ∈ ( I ↾ 𝐴 ) ↔ 〈 𝑦 , 𝑧 〉 ∈ ( I ↾ 𝐴 ) ) ) | |
| 67 | vex | ⊢ 𝑧 ∈ V | |
| 68 | 67 | brresi | ⊢ ( 𝑦 ( I ↾ 𝐴 ) 𝑧 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 I 𝑧 ) ) |
| 69 | df-br | ⊢ ( 𝑦 ( I ↾ 𝐴 ) 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ ( I ↾ 𝐴 ) ) | |
| 70 | 67 | ideq | ⊢ ( 𝑦 I 𝑧 ↔ 𝑦 = 𝑧 ) |
| 71 | 70 | anbi2i | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 I 𝑧 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 = 𝑧 ) ) |
| 72 | 68 69 71 | 3bitr3ri | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 = 𝑧 ) ↔ 〈 𝑦 , 𝑧 〉 ∈ ( I ↾ 𝐴 ) ) |
| 73 | 66 72 | bitr4di | ⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( 𝑤 ∈ ( I ↾ 𝐴 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 = 𝑧 ) ) ) |
| 74 | eleq1 | ⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( 𝑤 ∈ 𝑅 ↔ 〈 𝑦 , 𝑧 〉 ∈ 𝑅 ) ) | |
| 75 | df-br | ⊢ ( 𝑦 𝑅 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ 𝑅 ) | |
| 76 | 74 75 | bitr4di | ⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( 𝑤 ∈ 𝑅 ↔ 𝑦 𝑅 𝑧 ) ) |
| 77 | 76 | notbid | ⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( ¬ 𝑤 ∈ 𝑅 ↔ ¬ 𝑦 𝑅 𝑧 ) ) |
| 78 | 73 77 | imbi12d | ⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( ( 𝑤 ∈ ( I ↾ 𝐴 ) → ¬ 𝑤 ∈ 𝑅 ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 = 𝑧 ) → ¬ 𝑦 𝑅 𝑧 ) ) ) |
| 79 | 65 78 | syl5ibrcom | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) → ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( 𝑤 ∈ ( I ↾ 𝐴 ) → ¬ 𝑤 ∈ 𝑅 ) ) ) |
| 80 | 79 | exlimdvv | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) → ( ∃ 𝑦 ∃ 𝑧 𝑤 = 〈 𝑦 , 𝑧 〉 → ( 𝑤 ∈ ( I ↾ 𝐴 ) → ¬ 𝑤 ∈ 𝑅 ) ) ) |
| 81 | 80 | impd | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) → ( ( ∃ 𝑦 ∃ 𝑧 𝑤 = 〈 𝑦 , 𝑧 〉 ∧ 𝑤 ∈ ( I ↾ 𝐴 ) ) → ¬ 𝑤 ∈ 𝑅 ) ) |
| 82 | 53 81 | syl5 | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) → ( 𝑤 ∈ ( I ↾ 𝐴 ) → ¬ 𝑤 ∈ 𝑅 ) ) |
| 83 | 82 | con2d | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) → ( 𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴 ) ) ) |
| 84 | 83 | alrimiv | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) → ∀ 𝑤 ( 𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴 ) ) ) |
| 85 | 49 84 | impbii | ⊢ ( ∀ 𝑤 ( 𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) ) |
| 86 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 𝑅 𝑥 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) ) | |
| 87 | 85 86 | bitr4i | ⊢ ( ∀ 𝑤 ( 𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 𝑅 𝑥 ) |
| 88 | 35 36 87 | 3bitri | ⊢ ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 𝑅 𝑥 ) |
| 89 | ralcom | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) | |
| 90 | r19.23v | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) | |
| 91 | 90 | ralbii | ⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ∀ 𝑧 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| 92 | 89 91 | bitri | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ∀ 𝑧 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| 93 | 92 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| 94 | brin | ⊢ ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ↔ ( 𝑥 𝑅 𝑦 ∧ 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ) ) | |
| 95 | brin | ⊢ ( 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑧 ↔ ( 𝑦 𝑅 𝑧 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) ) | |
| 96 | 94 95 | anbi12i | ⊢ ( ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ∧ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑧 ) ↔ ( ( 𝑥 𝑅 𝑦 ∧ 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ) ∧ ( 𝑦 𝑅 𝑧 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) ) ) |
| 97 | an4 | ⊢ ( ( ( 𝑥 𝑅 𝑦 ∧ 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ) ∧ ( 𝑦 𝑅 𝑧 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) ) ↔ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ∧ ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) ) ) | |
| 98 | ancom | ⊢ ( ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ∧ ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) ) ↔ ( ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) | |
| 99 | ancom | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) | |
| 100 | 99 | anbi1i | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ) |
| 101 | brxp | ⊢ ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) | |
| 102 | brxp | ⊢ ( 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) | |
| 103 | 101 102 | anbi12i | ⊢ ( ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ) |
| 104 | anandi | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ) | |
| 105 | 100 103 104 | 3bitr4i | ⊢ ( ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) ↔ ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ) |
| 106 | 105 | anbi1i | ⊢ ( ( ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) |
| 107 | 97 98 106 | 3bitri | ⊢ ( ( ( 𝑥 𝑅 𝑦 ∧ 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ) ∧ ( 𝑦 𝑅 𝑧 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) |
| 108 | anass | ⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ↔ ( 𝑦 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) ) | |
| 109 | 96 107 108 | 3bitri | ⊢ ( ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ∧ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑧 ) ↔ ( 𝑦 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
| 110 | 109 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ∧ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑧 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
| 111 | vex | ⊢ 𝑥 ∈ V | |
| 112 | 111 67 | brco | ⊢ ( 𝑥 ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) 𝑧 ↔ ∃ 𝑦 ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ∧ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑧 ) ) |
| 113 | df-br | ⊢ ( 𝑥 ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) 𝑧 ↔ 〈 𝑥 , 𝑧 〉 ∈ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) | |
| 114 | 112 113 | bitr3i | ⊢ ( ∃ 𝑦 ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ∧ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑧 ) ↔ 〈 𝑥 , 𝑧 〉 ∈ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 115 | df-rex | ⊢ ( ∃ 𝑦 ∈ 𝐴 ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) ) | |
| 116 | r19.42v | ⊢ ( ∃ 𝑦 ∈ 𝐴 ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) | |
| 117 | 115 116 | bitr3i | ⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) |
| 118 | 110 114 117 | 3bitr3ri | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ↔ 〈 𝑥 , 𝑧 〉 ∈ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 119 | df-br | ⊢ ( 𝑥 𝑅 𝑧 ↔ 〈 𝑥 , 𝑧 〉 ∈ 𝑅 ) | |
| 120 | 118 119 | imbi12i | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) → 𝑥 𝑅 𝑧 ) ↔ ( 〈 𝑥 , 𝑧 〉 ∈ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) → 〈 𝑥 , 𝑧 〉 ∈ 𝑅 ) ) |
| 121 | 120 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) → 𝑥 𝑅 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑧 ( 〈 𝑥 , 𝑧 〉 ∈ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) → 〈 𝑥 , 𝑧 〉 ∈ 𝑅 ) ) |
| 122 | r2al | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) | |
| 123 | impexp | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) → 𝑥 𝑅 𝑧 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) | |
| 124 | 123 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) → 𝑥 𝑅 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
| 125 | 122 124 | bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) → 𝑥 𝑅 𝑧 ) ) |
| 126 | relco | ⊢ Rel ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) | |
| 127 | ssrel | ⊢ ( Rel ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) → ( ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑧 ( 〈 𝑥 , 𝑧 〉 ∈ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) → 〈 𝑥 , 𝑧 〉 ∈ 𝑅 ) ) ) | |
| 128 | 126 127 | ax-mp | ⊢ ( ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑧 ( 〈 𝑥 , 𝑧 〉 ∈ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) → 〈 𝑥 , 𝑧 〉 ∈ 𝑅 ) ) |
| 129 | 121 125 128 | 3bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ) |
| 130 | 93 129 | bitr2i | ⊢ ( ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| 131 | 88 130 | anbi12i | ⊢ ( ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
| 132 | 33 34 131 | 3bitr4g | ⊢ ( 𝐴 ≠ ∅ → ( 𝑅 Po 𝐴 ↔ ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ) ) ) |
| 133 | 26 132 | pm2.61ine | ⊢ ( 𝑅 Po 𝐴 ↔ ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ) ) |