This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the strict partial order predicate. Definition of Enderton p. 168. The expression R Po A means R is a partial order on A . For example, < Po RR is true, while <_ Po RR is false ( ex-po ). (Contributed by NM, 16-Mar-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-po | ⊢ ( 𝑅 Po 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | ⊢ 𝑅 | |
| 1 | cA | ⊢ 𝐴 | |
| 2 | 1 0 | wpo | ⊢ 𝑅 Po 𝐴 |
| 3 | vx | ⊢ 𝑥 | |
| 4 | vy | ⊢ 𝑦 | |
| 5 | vz | ⊢ 𝑧 | |
| 6 | 3 | cv | ⊢ 𝑥 |
| 7 | 6 6 0 | wbr | ⊢ 𝑥 𝑅 𝑥 |
| 8 | 7 | wn | ⊢ ¬ 𝑥 𝑅 𝑥 |
| 9 | 4 | cv | ⊢ 𝑦 |
| 10 | 6 9 0 | wbr | ⊢ 𝑥 𝑅 𝑦 |
| 11 | 5 | cv | ⊢ 𝑧 |
| 12 | 9 11 0 | wbr | ⊢ 𝑦 𝑅 𝑧 |
| 13 | 10 12 | wa | ⊢ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) |
| 14 | 6 11 0 | wbr | ⊢ 𝑥 𝑅 𝑧 |
| 15 | 13 14 | wi | ⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) |
| 16 | 8 15 | wa | ⊢ ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| 17 | 16 5 1 | wral | ⊢ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| 18 | 17 4 1 | wral | ⊢ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| 19 | 18 3 1 | wral | ⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| 20 | 2 19 | wb | ⊢ ( 𝑅 Po 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |