This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any relation is a partial order on the empty set. (Contributed by NM, 28-Mar-1997) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | po0 | ⊢ 𝑅 Po ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 | ⊢ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ∀ 𝑧 ∈ ∅ ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) | |
| 2 | df-po | ⊢ ( 𝑅 Po ∅ ↔ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ∀ 𝑧 ∈ ∅ ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) | |
| 3 | 1 2 | mpbir | ⊢ 𝑅 Po ∅ |