This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute proper substitution through a composition of relations. (Contributed by RP, 28-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbcog | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 ∘ 𝐶 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∘ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 | ⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 ∘ 𝐶 ) = ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 ∘ 𝐶 ) ) | |
| 2 | csbeq1 | ⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) | |
| 3 | csbeq1 | ⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) | |
| 4 | 2 3 | coeq12d | ⊢ ( 𝑦 = 𝐴 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∘ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∘ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 5 | 1 4 | eqeq12d | ⊢ ( 𝑦 = 𝐴 → ( ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 ∘ 𝐶 ) = ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∘ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 ∘ 𝐶 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∘ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) ) |
| 6 | vex | ⊢ 𝑦 ∈ V | |
| 7 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 | |
| 8 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 | |
| 9 | 7 8 | nfco | ⊢ Ⅎ 𝑥 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∘ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 10 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) | |
| 11 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) | |
| 12 | 10 11 | coeq12d | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∘ 𝐶 ) = ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∘ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
| 13 | 6 9 12 | csbief | ⊢ ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 ∘ 𝐶 ) = ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∘ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 14 | 5 13 | vtoclg | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 ∘ 𝐶 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∘ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |