This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of a group as semigroup with a left identity and a left inverse for each element. This "definition" is weaker than df-grp , based on the definition of a monoid which provides a left and a right identity. (Contributed by AV, 28-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfgrp2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| dfgrp2.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | dfgrp2 | ⊢ ( 𝐺 ∈ Grp ↔ ( 𝐺 ∈ Smgrp ∧ ∃ 𝑛 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfgrp2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | dfgrp2.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpsgrp | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Smgrp ) | |
| 4 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 5 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 6 | 1 5 | mndidcl | ⊢ ( 𝐺 ∈ Mnd → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 7 | 4 6 | syl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 8 | oveq1 | ⊢ ( 𝑛 = ( 0g ‘ 𝐺 ) → ( 𝑛 + 𝑥 ) = ( ( 0g ‘ 𝐺 ) + 𝑥 ) ) | |
| 9 | 8 | eqeq1d | ⊢ ( 𝑛 = ( 0g ‘ 𝐺 ) → ( ( 𝑛 + 𝑥 ) = 𝑥 ↔ ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ) ) |
| 10 | eqeq2 | ⊢ ( 𝑛 = ( 0g ‘ 𝐺 ) → ( ( 𝑖 + 𝑥 ) = 𝑛 ↔ ( 𝑖 + 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) | |
| 11 | 10 | rexbidv | ⊢ ( 𝑛 = ( 0g ‘ 𝐺 ) → ( ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ↔ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
| 12 | 9 11 | anbi12d | ⊢ ( 𝑛 = ( 0g ‘ 𝐺 ) → ( ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ↔ ( ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) ) |
| 13 | 12 | ralbidv | ⊢ ( 𝑛 = ( 0g ‘ 𝐺 ) → ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) ) |
| 14 | 13 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑛 = ( 0g ‘ 𝐺 ) ) → ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) ) |
| 15 | 1 2 5 | mndlid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ) |
| 16 | 4 15 | sylan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ) |
| 17 | 1 2 5 | grpinvex | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 18 | 16 17 | jca | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
| 19 | 18 | ralrimiva | ⊢ ( 𝐺 ∈ Grp → ∀ 𝑥 ∈ 𝐵 ( ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
| 20 | 7 14 19 | rspcedvd | ⊢ ( 𝐺 ∈ Grp → ∃ 𝑛 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) |
| 21 | 3 20 | jca | ⊢ ( 𝐺 ∈ Grp → ( 𝐺 ∈ Smgrp ∧ ∃ 𝑛 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ) |
| 22 | 1 | a1i | ⊢ ( ( ( 𝑛 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ∧ 𝐺 ∈ Smgrp ) → 𝐵 = ( Base ‘ 𝐺 ) ) |
| 23 | 2 | a1i | ⊢ ( ( ( 𝑛 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ∧ 𝐺 ∈ Smgrp ) → + = ( +g ‘ 𝐺 ) ) |
| 24 | sgrpmgm | ⊢ ( 𝐺 ∈ Smgrp → 𝐺 ∈ Mgm ) | |
| 25 | 24 | adantl | ⊢ ( ( ( 𝑛 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ∧ 𝐺 ∈ Smgrp ) → 𝐺 ∈ Mgm ) |
| 26 | 1 2 | mgmcl | ⊢ ( ( 𝐺 ∈ Mgm ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 + 𝑏 ) ∈ 𝐵 ) |
| 27 | 25 26 | syl3an1 | ⊢ ( ( ( ( 𝑛 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ∧ 𝐺 ∈ Smgrp ) ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 + 𝑏 ) ∈ 𝐵 ) |
| 28 | 1 2 | sgrpass | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( ( 𝑎 + 𝑏 ) + 𝑐 ) = ( 𝑎 + ( 𝑏 + 𝑐 ) ) ) |
| 29 | 28 | adantll | ⊢ ( ( ( ( 𝑛 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ∧ 𝐺 ∈ Smgrp ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( ( 𝑎 + 𝑏 ) + 𝑐 ) = ( 𝑎 + ( 𝑏 + 𝑐 ) ) ) |
| 30 | simpll | ⊢ ( ( ( 𝑛 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ∧ 𝐺 ∈ Smgrp ) → 𝑛 ∈ 𝐵 ) | |
| 31 | oveq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝑛 + 𝑥 ) = ( 𝑛 + 𝑎 ) ) | |
| 32 | id | ⊢ ( 𝑥 = 𝑎 → 𝑥 = 𝑎 ) | |
| 33 | 31 32 | eqeq12d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑛 + 𝑥 ) = 𝑥 ↔ ( 𝑛 + 𝑎 ) = 𝑎 ) ) |
| 34 | oveq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝑖 + 𝑥 ) = ( 𝑖 + 𝑎 ) ) | |
| 35 | 34 | eqeq1d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑖 + 𝑥 ) = 𝑛 ↔ ( 𝑖 + 𝑎 ) = 𝑛 ) ) |
| 36 | 35 | rexbidv | ⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ↔ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑛 ) ) |
| 37 | 33 36 | anbi12d | ⊢ ( 𝑥 = 𝑎 → ( ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ↔ ( ( 𝑛 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑛 ) ) ) |
| 38 | 37 | rspcv | ⊢ ( 𝑎 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) → ( ( 𝑛 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑛 ) ) ) |
| 39 | simpl | ⊢ ( ( ( 𝑛 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑛 ) → ( 𝑛 + 𝑎 ) = 𝑎 ) | |
| 40 | 38 39 | syl6com | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) → ( 𝑎 ∈ 𝐵 → ( 𝑛 + 𝑎 ) = 𝑎 ) ) |
| 41 | 40 | ad2antlr | ⊢ ( ( ( 𝑛 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ∧ 𝐺 ∈ Smgrp ) → ( 𝑎 ∈ 𝐵 → ( 𝑛 + 𝑎 ) = 𝑎 ) ) |
| 42 | 41 | imp | ⊢ ( ( ( ( 𝑛 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ∧ 𝐺 ∈ Smgrp ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑛 + 𝑎 ) = 𝑎 ) |
| 43 | oveq1 | ⊢ ( 𝑖 = 𝑏 → ( 𝑖 + 𝑎 ) = ( 𝑏 + 𝑎 ) ) | |
| 44 | 43 | eqeq1d | ⊢ ( 𝑖 = 𝑏 → ( ( 𝑖 + 𝑎 ) = 𝑛 ↔ ( 𝑏 + 𝑎 ) = 𝑛 ) ) |
| 45 | 44 | cbvrexvw | ⊢ ( ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑛 ↔ ∃ 𝑏 ∈ 𝐵 ( 𝑏 + 𝑎 ) = 𝑛 ) |
| 46 | 45 | biimpi | ⊢ ( ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑛 → ∃ 𝑏 ∈ 𝐵 ( 𝑏 + 𝑎 ) = 𝑛 ) |
| 47 | 46 | adantl | ⊢ ( ( ( 𝑛 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑛 ) → ∃ 𝑏 ∈ 𝐵 ( 𝑏 + 𝑎 ) = 𝑛 ) |
| 48 | 38 47 | syl6com | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) → ( 𝑎 ∈ 𝐵 → ∃ 𝑏 ∈ 𝐵 ( 𝑏 + 𝑎 ) = 𝑛 ) ) |
| 49 | 48 | ad2antlr | ⊢ ( ( ( 𝑛 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ∧ 𝐺 ∈ Smgrp ) → ( 𝑎 ∈ 𝐵 → ∃ 𝑏 ∈ 𝐵 ( 𝑏 + 𝑎 ) = 𝑛 ) ) |
| 50 | 49 | imp | ⊢ ( ( ( ( 𝑛 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ∧ 𝐺 ∈ Smgrp ) ∧ 𝑎 ∈ 𝐵 ) → ∃ 𝑏 ∈ 𝐵 ( 𝑏 + 𝑎 ) = 𝑛 ) |
| 51 | 22 23 27 29 30 42 50 | isgrpde | ⊢ ( ( ( 𝑛 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ∧ 𝐺 ∈ Smgrp ) → 𝐺 ∈ Grp ) |
| 52 | 51 | ex | ⊢ ( ( 𝑛 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) → ( 𝐺 ∈ Smgrp → 𝐺 ∈ Grp ) ) |
| 53 | 52 | rexlimiva | ⊢ ( ∃ 𝑛 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) → ( 𝐺 ∈ Smgrp → 𝐺 ∈ Grp ) ) |
| 54 | 53 | impcom | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ∃ 𝑛 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) → 𝐺 ∈ Grp ) |
| 55 | 21 54 | impbii | ⊢ ( 𝐺 ∈ Grp ↔ ( 𝐺 ∈ Smgrp ∧ ∃ 𝑛 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ) |