This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of a group as semigroup with a left identity and a left inverse for each element. This "definition" is weaker than df-grp , based on the definition of a monoid which provides a left and a right identity. (Contributed by AV, 28-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfgrp2.b | |- B = ( Base ` G ) |
|
| dfgrp2.p | |- .+ = ( +g ` G ) |
||
| Assertion | dfgrp2 | |- ( G e. Grp <-> ( G e. Smgrp /\ E. n e. B A. x e. B ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfgrp2.b | |- B = ( Base ` G ) |
|
| 2 | dfgrp2.p | |- .+ = ( +g ` G ) |
|
| 3 | grpsgrp | |- ( G e. Grp -> G e. Smgrp ) |
|
| 4 | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
|
| 5 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 6 | 1 5 | mndidcl | |- ( G e. Mnd -> ( 0g ` G ) e. B ) |
| 7 | 4 6 | syl | |- ( G e. Grp -> ( 0g ` G ) e. B ) |
| 8 | oveq1 | |- ( n = ( 0g ` G ) -> ( n .+ x ) = ( ( 0g ` G ) .+ x ) ) |
|
| 9 | 8 | eqeq1d | |- ( n = ( 0g ` G ) -> ( ( n .+ x ) = x <-> ( ( 0g ` G ) .+ x ) = x ) ) |
| 10 | eqeq2 | |- ( n = ( 0g ` G ) -> ( ( i .+ x ) = n <-> ( i .+ x ) = ( 0g ` G ) ) ) |
|
| 11 | 10 | rexbidv | |- ( n = ( 0g ` G ) -> ( E. i e. B ( i .+ x ) = n <-> E. i e. B ( i .+ x ) = ( 0g ` G ) ) ) |
| 12 | 9 11 | anbi12d | |- ( n = ( 0g ` G ) -> ( ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) <-> ( ( ( 0g ` G ) .+ x ) = x /\ E. i e. B ( i .+ x ) = ( 0g ` G ) ) ) ) |
| 13 | 12 | ralbidv | |- ( n = ( 0g ` G ) -> ( A. x e. B ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) <-> A. x e. B ( ( ( 0g ` G ) .+ x ) = x /\ E. i e. B ( i .+ x ) = ( 0g ` G ) ) ) ) |
| 14 | 13 | adantl | |- ( ( G e. Grp /\ n = ( 0g ` G ) ) -> ( A. x e. B ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) <-> A. x e. B ( ( ( 0g ` G ) .+ x ) = x /\ E. i e. B ( i .+ x ) = ( 0g ` G ) ) ) ) |
| 15 | 1 2 5 | mndlid | |- ( ( G e. Mnd /\ x e. B ) -> ( ( 0g ` G ) .+ x ) = x ) |
| 16 | 4 15 | sylan | |- ( ( G e. Grp /\ x e. B ) -> ( ( 0g ` G ) .+ x ) = x ) |
| 17 | 1 2 5 | grpinvex | |- ( ( G e. Grp /\ x e. B ) -> E. i e. B ( i .+ x ) = ( 0g ` G ) ) |
| 18 | 16 17 | jca | |- ( ( G e. Grp /\ x e. B ) -> ( ( ( 0g ` G ) .+ x ) = x /\ E. i e. B ( i .+ x ) = ( 0g ` G ) ) ) |
| 19 | 18 | ralrimiva | |- ( G e. Grp -> A. x e. B ( ( ( 0g ` G ) .+ x ) = x /\ E. i e. B ( i .+ x ) = ( 0g ` G ) ) ) |
| 20 | 7 14 19 | rspcedvd | |- ( G e. Grp -> E. n e. B A. x e. B ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) ) |
| 21 | 3 20 | jca | |- ( G e. Grp -> ( G e. Smgrp /\ E. n e. B A. x e. B ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) ) ) |
| 22 | 1 | a1i | |- ( ( ( n e. B /\ A. x e. B ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) ) /\ G e. Smgrp ) -> B = ( Base ` G ) ) |
| 23 | 2 | a1i | |- ( ( ( n e. B /\ A. x e. B ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) ) /\ G e. Smgrp ) -> .+ = ( +g ` G ) ) |
| 24 | sgrpmgm | |- ( G e. Smgrp -> G e. Mgm ) |
|
| 25 | 24 | adantl | |- ( ( ( n e. B /\ A. x e. B ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) ) /\ G e. Smgrp ) -> G e. Mgm ) |
| 26 | 1 2 | mgmcl | |- ( ( G e. Mgm /\ a e. B /\ b e. B ) -> ( a .+ b ) e. B ) |
| 27 | 25 26 | syl3an1 | |- ( ( ( ( n e. B /\ A. x e. B ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) ) /\ G e. Smgrp ) /\ a e. B /\ b e. B ) -> ( a .+ b ) e. B ) |
| 28 | 1 2 | sgrpass | |- ( ( G e. Smgrp /\ ( a e. B /\ b e. B /\ c e. B ) ) -> ( ( a .+ b ) .+ c ) = ( a .+ ( b .+ c ) ) ) |
| 29 | 28 | adantll | |- ( ( ( ( n e. B /\ A. x e. B ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) ) /\ G e. Smgrp ) /\ ( a e. B /\ b e. B /\ c e. B ) ) -> ( ( a .+ b ) .+ c ) = ( a .+ ( b .+ c ) ) ) |
| 30 | simpll | |- ( ( ( n e. B /\ A. x e. B ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) ) /\ G e. Smgrp ) -> n e. B ) |
|
| 31 | oveq2 | |- ( x = a -> ( n .+ x ) = ( n .+ a ) ) |
|
| 32 | id | |- ( x = a -> x = a ) |
|
| 33 | 31 32 | eqeq12d | |- ( x = a -> ( ( n .+ x ) = x <-> ( n .+ a ) = a ) ) |
| 34 | oveq2 | |- ( x = a -> ( i .+ x ) = ( i .+ a ) ) |
|
| 35 | 34 | eqeq1d | |- ( x = a -> ( ( i .+ x ) = n <-> ( i .+ a ) = n ) ) |
| 36 | 35 | rexbidv | |- ( x = a -> ( E. i e. B ( i .+ x ) = n <-> E. i e. B ( i .+ a ) = n ) ) |
| 37 | 33 36 | anbi12d | |- ( x = a -> ( ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) <-> ( ( n .+ a ) = a /\ E. i e. B ( i .+ a ) = n ) ) ) |
| 38 | 37 | rspcv | |- ( a e. B -> ( A. x e. B ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) -> ( ( n .+ a ) = a /\ E. i e. B ( i .+ a ) = n ) ) ) |
| 39 | simpl | |- ( ( ( n .+ a ) = a /\ E. i e. B ( i .+ a ) = n ) -> ( n .+ a ) = a ) |
|
| 40 | 38 39 | syl6com | |- ( A. x e. B ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) -> ( a e. B -> ( n .+ a ) = a ) ) |
| 41 | 40 | ad2antlr | |- ( ( ( n e. B /\ A. x e. B ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) ) /\ G e. Smgrp ) -> ( a e. B -> ( n .+ a ) = a ) ) |
| 42 | 41 | imp | |- ( ( ( ( n e. B /\ A. x e. B ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) ) /\ G e. Smgrp ) /\ a e. B ) -> ( n .+ a ) = a ) |
| 43 | oveq1 | |- ( i = b -> ( i .+ a ) = ( b .+ a ) ) |
|
| 44 | 43 | eqeq1d | |- ( i = b -> ( ( i .+ a ) = n <-> ( b .+ a ) = n ) ) |
| 45 | 44 | cbvrexvw | |- ( E. i e. B ( i .+ a ) = n <-> E. b e. B ( b .+ a ) = n ) |
| 46 | 45 | biimpi | |- ( E. i e. B ( i .+ a ) = n -> E. b e. B ( b .+ a ) = n ) |
| 47 | 46 | adantl | |- ( ( ( n .+ a ) = a /\ E. i e. B ( i .+ a ) = n ) -> E. b e. B ( b .+ a ) = n ) |
| 48 | 38 47 | syl6com | |- ( A. x e. B ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) -> ( a e. B -> E. b e. B ( b .+ a ) = n ) ) |
| 49 | 48 | ad2antlr | |- ( ( ( n e. B /\ A. x e. B ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) ) /\ G e. Smgrp ) -> ( a e. B -> E. b e. B ( b .+ a ) = n ) ) |
| 50 | 49 | imp | |- ( ( ( ( n e. B /\ A. x e. B ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) ) /\ G e. Smgrp ) /\ a e. B ) -> E. b e. B ( b .+ a ) = n ) |
| 51 | 22 23 27 29 30 42 50 | isgrpde | |- ( ( ( n e. B /\ A. x e. B ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) ) /\ G e. Smgrp ) -> G e. Grp ) |
| 52 | 51 | ex | |- ( ( n e. B /\ A. x e. B ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) ) -> ( G e. Smgrp -> G e. Grp ) ) |
| 53 | 52 | rexlimiva | |- ( E. n e. B A. x e. B ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) -> ( G e. Smgrp -> G e. Grp ) ) |
| 54 | 53 | impcom | |- ( ( G e. Smgrp /\ E. n e. B A. x e. B ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) ) -> G e. Grp ) |
| 55 | 21 54 | impbii | |- ( G e. Grp <-> ( G e. Smgrp /\ E. n e. B A. x e. B ( ( n .+ x ) = x /\ E. i e. B ( i .+ x ) = n ) ) ) |