This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of a group as a set with a closed, associative operation, a left identity and a left inverse for each element. Alternate definition in Lang p. 7. (Contributed by NM, 10-Oct-2006) (Revised by AV, 28-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfgrp2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| dfgrp2.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | dfgrp2e | ⊢ ( 𝐺 ∈ Grp ↔ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ∧ ∃ 𝑛 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfgrp2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | dfgrp2.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | 1 2 | dfgrp2 | ⊢ ( 𝐺 ∈ Grp ↔ ( 𝐺 ∈ Smgrp ∧ ∃ 𝑛 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ) |
| 4 | ax-1 | ⊢ ( 𝐺 ∈ V → ( 𝑛 ∈ 𝐵 → 𝐺 ∈ V ) ) | |
| 5 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( Base ‘ 𝐺 ) = ∅ ) | |
| 6 | 1 | eleq2i | ⊢ ( 𝑛 ∈ 𝐵 ↔ 𝑛 ∈ ( Base ‘ 𝐺 ) ) |
| 7 | eleq2 | ⊢ ( ( Base ‘ 𝐺 ) = ∅ → ( 𝑛 ∈ ( Base ‘ 𝐺 ) ↔ 𝑛 ∈ ∅ ) ) | |
| 8 | noel | ⊢ ¬ 𝑛 ∈ ∅ | |
| 9 | 8 | pm2.21i | ⊢ ( 𝑛 ∈ ∅ → 𝐺 ∈ V ) |
| 10 | 7 9 | biimtrdi | ⊢ ( ( Base ‘ 𝐺 ) = ∅ → ( 𝑛 ∈ ( Base ‘ 𝐺 ) → 𝐺 ∈ V ) ) |
| 11 | 6 10 | biimtrid | ⊢ ( ( Base ‘ 𝐺 ) = ∅ → ( 𝑛 ∈ 𝐵 → 𝐺 ∈ V ) ) |
| 12 | 5 11 | syl | ⊢ ( ¬ 𝐺 ∈ V → ( 𝑛 ∈ 𝐵 → 𝐺 ∈ V ) ) |
| 13 | 4 12 | pm2.61i | ⊢ ( 𝑛 ∈ 𝐵 → 𝐺 ∈ V ) |
| 14 | 13 | a1d | ⊢ ( 𝑛 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) → 𝐺 ∈ V ) ) |
| 15 | 14 | rexlimiv | ⊢ ( ∃ 𝑛 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) → 𝐺 ∈ V ) |
| 16 | 1 2 | issgrpv | ⊢ ( 𝐺 ∈ V → ( 𝐺 ∈ Smgrp ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ) ) |
| 17 | 15 16 | syl | ⊢ ( ∃ 𝑛 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) → ( 𝐺 ∈ Smgrp ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ) ) |
| 18 | 17 | pm5.32ri | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ∃ 𝑛 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ↔ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ∧ ∃ 𝑛 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ) |
| 19 | 3 18 | bitri | ⊢ ( 𝐺 ∈ Grp ↔ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ∧ ∃ 𝑛 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ) |