This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every member of a group has a left inverse. (Contributed by NM, 16-Aug-2011) (Revised by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpcl.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpinvex.p | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | grpinvex | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpcl.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpinvex.p | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | 1 2 3 | isgrp | ⊢ ( 𝐺 ∈ Grp ↔ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) |
| 5 | 4 | simprbi | ⊢ ( 𝐺 ∈ Grp → ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) |
| 6 | oveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑦 + 𝑥 ) = ( 𝑦 + 𝑋 ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑦 + 𝑥 ) = 0 ↔ ( 𝑦 + 𝑋 ) = 0 ) ) |
| 8 | 7 | rexbidv | ⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ↔ ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) ) |
| 9 | 8 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ∧ 𝑋 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) |
| 10 | 5 9 | sylan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) |