This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of function value df-fv that doesn't require dummy variables. (Contributed by NM, 4-Aug-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffv2 | ⊢ ( 𝐹 ‘ 𝐴 ) = ∪ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snidb | ⊢ ( 𝐴 ∈ V ↔ 𝐴 ∈ { 𝐴 } ) | |
| 2 | fvres | ⊢ ( 𝐴 ∈ { 𝐴 } → ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 3 | 1 2 | sylbi | ⊢ ( 𝐴 ∈ V → ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 4 | fvprc | ⊢ ( ¬ 𝐴 ∈ V → ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) = ∅ ) | |
| 5 | fvprc | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐹 ‘ 𝐴 ) = ∅ ) | |
| 6 | 4 5 | eqtr4d | ⊢ ( ¬ 𝐴 ∈ V → ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 7 | 3 6 | pm2.61i | ⊢ ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) |
| 8 | funfv | ⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) = ∪ ( ( 𝐹 ↾ { 𝐴 } ) “ { 𝐴 } ) ) | |
| 9 | resima | ⊢ ( ( 𝐹 ↾ { 𝐴 } ) “ { 𝐴 } ) = ( 𝐹 “ { 𝐴 } ) | |
| 10 | dif0 | ⊢ ( ( 𝐹 “ { 𝐴 } ) ∖ ∅ ) = ( 𝐹 “ { 𝐴 } ) | |
| 11 | 9 10 | eqtr4i | ⊢ ( ( 𝐹 ↾ { 𝐴 } ) “ { 𝐴 } ) = ( ( 𝐹 “ { 𝐴 } ) ∖ ∅ ) |
| 12 | df-fun | ⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) ↔ ( Rel ( 𝐹 ↾ { 𝐴 } ) ∧ ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ⊆ I ) ) | |
| 13 | 12 | simprbi | ⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ⊆ I ) |
| 14 | ssdif0 | ⊢ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ⊆ I ↔ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) = ∅ ) | |
| 15 | 13 14 | sylib | ⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) = ∅ ) |
| 16 | 15 | unieqd | ⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) = ∪ ∅ ) |
| 17 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 18 | 16 17 | eqtrdi | ⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) = ∅ ) |
| 19 | 18 | unieqd | ⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) = ∪ ∅ ) |
| 20 | 19 17 | eqtrdi | ⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) = ∅ ) |
| 21 | 20 | difeq2d | ⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ( ( 𝐹 “ { 𝐴 } ) ∖ ∅ ) ) |
| 22 | 11 21 | eqtr4id | ⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 ↾ { 𝐴 } ) “ { 𝐴 } ) = ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
| 23 | 22 | unieqd | ⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ∪ ( ( 𝐹 ↾ { 𝐴 } ) “ { 𝐴 } ) = ∪ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
| 24 | 8 23 | eqtrd | ⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) = ∪ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
| 25 | 7 24 | eqtr3id | ⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐹 ‘ 𝐴 ) = ∪ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
| 26 | nfunsn | ⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐹 ‘ 𝐴 ) = ∅ ) | |
| 27 | relres | ⊢ Rel ( 𝐹 ↾ { 𝐴 } ) | |
| 28 | dffun3 | ⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) ↔ ( Rel ( 𝐹 ↾ { 𝐴 } ) ∧ ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑧 = 𝑦 ) ) ) | |
| 29 | 27 28 | mpbiran | ⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) ↔ ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑧 = 𝑦 ) ) |
| 30 | iman | ⊢ ( ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑧 = 𝑦 ) ↔ ¬ ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) | |
| 31 | 30 | albii | ⊢ ( ∀ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑧 = 𝑦 ) ↔ ∀ 𝑧 ¬ ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
| 32 | alnex | ⊢ ( ∀ 𝑧 ¬ ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ↔ ¬ ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) | |
| 33 | 31 32 | bitri | ⊢ ( ∀ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑧 = 𝑦 ) ↔ ¬ ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
| 34 | 33 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑧 = 𝑦 ) ↔ ∃ 𝑦 ¬ ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
| 35 | exnal | ⊢ ( ∃ 𝑦 ¬ ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ↔ ¬ ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) | |
| 36 | 34 35 | bitri | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑧 = 𝑦 ) ↔ ¬ ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
| 37 | 36 | albii | ⊢ ( ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑧 = 𝑦 ) ↔ ∀ 𝑥 ¬ ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
| 38 | alnex | ⊢ ( ∀ 𝑥 ¬ ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ↔ ¬ ∃ 𝑥 ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) | |
| 39 | 29 37 38 | 3bitrri | ⊢ ( ¬ ∃ 𝑥 ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ↔ Fun ( 𝐹 ↾ { 𝐴 } ) ) |
| 40 | 39 | con1bii | ⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ↔ ∃ 𝑥 ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
| 41 | sp | ⊢ ( ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) → ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) | |
| 42 | 41 | eximi | ⊢ ( ∃ 𝑥 ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) → ∃ 𝑥 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
| 43 | 40 42 | sylbi | ⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ∃ 𝑥 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
| 44 | snssi | ⊢ ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → { 𝐴 } ⊆ dom ( 𝐹 ↾ { 𝐴 } ) ) | |
| 45 | residm | ⊢ ( ( 𝐹 ↾ { 𝐴 } ) ↾ { 𝐴 } ) = ( 𝐹 ↾ { 𝐴 } ) | |
| 46 | 45 | dmeqi | ⊢ dom ( ( 𝐹 ↾ { 𝐴 } ) ↾ { 𝐴 } ) = dom ( 𝐹 ↾ { 𝐴 } ) |
| 47 | ssdmres | ⊢ ( { 𝐴 } ⊆ dom ( 𝐹 ↾ { 𝐴 } ) ↔ dom ( ( 𝐹 ↾ { 𝐴 } ) ↾ { 𝐴 } ) = { 𝐴 } ) | |
| 48 | 47 | biimpi | ⊢ ( { 𝐴 } ⊆ dom ( 𝐹 ↾ { 𝐴 } ) → dom ( ( 𝐹 ↾ { 𝐴 } ) ↾ { 𝐴 } ) = { 𝐴 } ) |
| 49 | 46 48 | eqtr3id | ⊢ ( { 𝐴 } ⊆ dom ( 𝐹 ↾ { 𝐴 } ) → dom ( 𝐹 ↾ { 𝐴 } ) = { 𝐴 } ) |
| 50 | 44 49 | syl | ⊢ ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → dom ( 𝐹 ↾ { 𝐴 } ) = { 𝐴 } ) |
| 51 | vex | ⊢ 𝑥 ∈ V | |
| 52 | vex | ⊢ 𝑧 ∈ V | |
| 53 | 51 52 | breldm | ⊢ ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ) |
| 54 | eleq2 | ⊢ ( dom ( 𝐹 ↾ { 𝐴 } ) = { 𝐴 } → ( 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ↔ 𝑥 ∈ { 𝐴 } ) ) | |
| 55 | velsn | ⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) | |
| 56 | 54 55 | bitrdi | ⊢ ( dom ( 𝐹 ↾ { 𝐴 } ) = { 𝐴 } → ( 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ↔ 𝑥 = 𝐴 ) ) |
| 57 | 56 | biimpa | ⊢ ( ( dom ( 𝐹 ↾ { 𝐴 } ) = { 𝐴 } ∧ 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ) → 𝑥 = 𝐴 ) |
| 58 | 50 53 57 | syl2an | ⊢ ( ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) → 𝑥 = 𝐴 ) |
| 59 | 58 | breq1d | ⊢ ( ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) → ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ↔ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
| 60 | 59 | biimpd | ⊢ ( ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) → ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
| 61 | 60 | ex | ⊢ ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) ) |
| 62 | 61 | pm2.43d | ⊢ ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
| 63 | 62 | anim1d | ⊢ ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) → ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) ) |
| 64 | 63 | eximdv | ⊢ ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) → ∃ 𝑧 ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) ) |
| 65 | 64 | exlimdv | ⊢ ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( ∃ 𝑥 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) → ∃ 𝑧 ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) ) |
| 66 | 43 65 | mpan9 | ⊢ ( ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ) → ∃ 𝑧 ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
| 67 | 9 | eleq2i | ⊢ ( 𝑦 ∈ ( ( 𝐹 ↾ { 𝐴 } ) “ { 𝐴 } ) ↔ 𝑦 ∈ ( 𝐹 “ { 𝐴 } ) ) |
| 68 | elimasni | ⊢ ( 𝑦 ∈ ( ( 𝐹 ↾ { 𝐴 } ) “ { 𝐴 } ) → 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) | |
| 69 | 67 68 | sylbir | ⊢ ( 𝑦 ∈ ( 𝐹 “ { 𝐴 } ) → 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) |
| 70 | vex | ⊢ 𝑦 ∈ V | |
| 71 | 70 52 | uniop | ⊢ ∪ 〈 𝑦 , 𝑧 〉 = { 𝑦 , 𝑧 } |
| 72 | opex | ⊢ 〈 𝑦 , 𝑧 〉 ∈ V | |
| 73 | 72 | unisn | ⊢ ∪ { 〈 𝑦 , 𝑧 〉 } = 〈 𝑦 , 𝑧 〉 |
| 74 | 27 | brrelex1i | ⊢ ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝐴 ∈ V ) |
| 75 | brcnvg | ⊢ ( ( 𝑦 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ↔ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) ) | |
| 76 | 70 74 75 | sylancr | ⊢ ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ↔ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) ) |
| 77 | 76 | biimpar | ⊢ ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ) |
| 78 | 74 | adantl | ⊢ ( ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) → 𝐴 ∈ V ) |
| 79 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ↔ 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ) ) | |
| 80 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ↔ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) | |
| 81 | 79 80 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ↔ ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) ) |
| 82 | 81 | rspcev | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) → ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
| 83 | 78 82 | mpancom | ⊢ ( ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) → ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
| 84 | 83 | ancoms | ⊢ ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ) → ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
| 85 | 77 84 | syldan | ⊢ ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
| 86 | 85 | anim1i | ⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) ∧ ¬ 𝑧 = 𝑦 ) → ( ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ∧ ¬ 𝑧 = 𝑦 ) ) |
| 87 | 86 | an32s | ⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → ( ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ∧ ¬ 𝑧 = 𝑦 ) ) |
| 88 | eldif | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ↔ ( 〈 𝑦 , 𝑧 〉 ∈ ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∧ ¬ 〈 𝑦 , 𝑧 〉 ∈ I ) ) | |
| 89 | rexv | ⊢ ( ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ↔ ∃ 𝑥 ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) | |
| 90 | 70 52 | brco | ⊢ ( 𝑦 ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) 𝑧 ↔ ∃ 𝑥 ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
| 91 | df-br | ⊢ ( 𝑦 ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ) | |
| 92 | 89 90 91 | 3bitr2ri | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ↔ ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
| 93 | 52 | ideq | ⊢ ( 𝑦 I 𝑧 ↔ 𝑦 = 𝑧 ) |
| 94 | df-br | ⊢ ( 𝑦 I 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ I ) | |
| 95 | equcom | ⊢ ( 𝑦 = 𝑧 ↔ 𝑧 = 𝑦 ) | |
| 96 | 93 94 95 | 3bitr3i | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ I ↔ 𝑧 = 𝑦 ) |
| 97 | 96 | notbii | ⊢ ( ¬ 〈 𝑦 , 𝑧 〉 ∈ I ↔ ¬ 𝑧 = 𝑦 ) |
| 98 | 92 97 | anbi12i | ⊢ ( ( 〈 𝑦 , 𝑧 〉 ∈ ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∧ ¬ 〈 𝑦 , 𝑧 〉 ∈ I ) ↔ ( ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ∧ ¬ 𝑧 = 𝑦 ) ) |
| 99 | 88 98 | bitr2i | ⊢ ( ( ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ∧ ¬ 𝑧 = 𝑦 ) ↔ 〈 𝑦 , 𝑧 〉 ∈ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
| 100 | 87 99 | sylib | ⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → 〈 𝑦 , 𝑧 〉 ∈ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
| 101 | snssi | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) → { 〈 𝑦 , 𝑧 〉 } ⊆ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) | |
| 102 | uniss | ⊢ ( { 〈 𝑦 , 𝑧 〉 } ⊆ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) → ∪ { 〈 𝑦 , 𝑧 〉 } ⊆ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) | |
| 103 | 100 101 102 | 3syl | ⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → ∪ { 〈 𝑦 , 𝑧 〉 } ⊆ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
| 104 | 73 103 | eqsstrrid | ⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → 〈 𝑦 , 𝑧 〉 ⊆ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
| 105 | 104 | unissd | ⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → ∪ 〈 𝑦 , 𝑧 〉 ⊆ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
| 106 | 71 105 | eqsstrrid | ⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → { 𝑦 , 𝑧 } ⊆ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
| 107 | 70 52 | prss | ⊢ ( ( 𝑦 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ∧ 𝑧 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ↔ { 𝑦 , 𝑧 } ⊆ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
| 108 | 106 107 | sylibr | ⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → ( 𝑦 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ∧ 𝑧 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
| 109 | 108 | simpld | ⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → 𝑦 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
| 110 | 109 | ex | ⊢ ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) → ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 → 𝑦 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
| 111 | 69 110 | syl5 | ⊢ ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) → ( 𝑦 ∈ ( 𝐹 “ { 𝐴 } ) → 𝑦 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
| 112 | 111 | exlimiv | ⊢ ( ∃ 𝑧 ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) → ( 𝑦 ∈ ( 𝐹 “ { 𝐴 } ) → 𝑦 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
| 113 | 66 112 | syl | ⊢ ( ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝑦 ∈ ( 𝐹 “ { 𝐴 } ) → 𝑦 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
| 114 | 113 | ssrdv | ⊢ ( ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝐹 “ { 𝐴 } ) ⊆ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
| 115 | ssdif0 | ⊢ ( ( 𝐹 “ { 𝐴 } ) ⊆ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ↔ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ∅ ) | |
| 116 | 114 115 | sylib | ⊢ ( ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ) → ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ∅ ) |
| 117 | 116 | ex | ⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ∅ ) ) |
| 118 | ndmima | ⊢ ( ¬ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 ↾ { 𝐴 } ) “ { 𝐴 } ) = ∅ ) | |
| 119 | 9 118 | eqtr3id | ⊢ ( ¬ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( 𝐹 “ { 𝐴 } ) = ∅ ) |
| 120 | 119 | difeq1d | ⊢ ( ¬ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ( ∅ ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
| 121 | 0dif | ⊢ ( ∅ ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ∅ | |
| 122 | 120 121 | eqtrdi | ⊢ ( ¬ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ∅ ) |
| 123 | 117 122 | pm2.61d1 | ⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ∅ ) |
| 124 | 123 | unieqd | ⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ∪ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ∪ ∅ ) |
| 125 | 124 17 | eqtrdi | ⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ∪ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ∅ ) |
| 126 | 26 125 | eqtr4d | ⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐹 ‘ 𝐴 ) = ∪ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
| 127 | 25 126 | pm2.61i | ⊢ ( 𝐹 ‘ 𝐴 ) = ∪ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |