This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an image of a singleton. (Contributed by NM, 5-Aug-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elimasni | ⊢ ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) → 𝐵 𝐴 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel | ⊢ ¬ 𝐶 ∈ ∅ | |
| 2 | snprc | ⊢ ( ¬ 𝐵 ∈ V ↔ { 𝐵 } = ∅ ) | |
| 3 | 2 | biimpi | ⊢ ( ¬ 𝐵 ∈ V → { 𝐵 } = ∅ ) |
| 4 | 3 | imaeq2d | ⊢ ( ¬ 𝐵 ∈ V → ( 𝐴 “ { 𝐵 } ) = ( 𝐴 “ ∅ ) ) |
| 5 | ima0 | ⊢ ( 𝐴 “ ∅ ) = ∅ | |
| 6 | 4 5 | eqtrdi | ⊢ ( ¬ 𝐵 ∈ V → ( 𝐴 “ { 𝐵 } ) = ∅ ) |
| 7 | 6 | eleq2d | ⊢ ( ¬ 𝐵 ∈ V → ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ 𝐶 ∈ ∅ ) ) |
| 8 | 1 7 | mtbiri | ⊢ ( ¬ 𝐵 ∈ V → ¬ 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ) |
| 9 | 8 | con4i | ⊢ ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) → 𝐵 ∈ V ) |
| 10 | elex | ⊢ ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) → 𝐶 ∈ V ) | |
| 11 | 9 10 | jca | ⊢ ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) → ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) |
| 12 | elimasng1 | ⊢ ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ 𝐵 𝐴 𝐶 ) ) | |
| 13 | 12 | biimpd | ⊢ ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) → 𝐵 𝐴 𝐶 ) ) |
| 14 | 11 13 | mpcom | ⊢ ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) → 𝐵 𝐴 𝐶 ) |