This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simplified expression for the value of a function when we know it is a function. (Contributed by NM, 22-May-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funfv | ⊢ ( Fun 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∪ ( 𝐹 “ { 𝐴 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | ⊢ ( 𝐹 ‘ 𝐴 ) ∈ V | |
| 2 | 1 | unisn | ⊢ ∪ { ( 𝐹 ‘ 𝐴 ) } = ( 𝐹 ‘ 𝐴 ) |
| 3 | eqid | ⊢ dom 𝐹 = dom 𝐹 | |
| 4 | df-fn | ⊢ ( 𝐹 Fn dom 𝐹 ↔ ( Fun 𝐹 ∧ dom 𝐹 = dom 𝐹 ) ) | |
| 5 | 3 4 | mpbiran2 | ⊢ ( 𝐹 Fn dom 𝐹 ↔ Fun 𝐹 ) |
| 6 | fnsnfv | ⊢ ( ( 𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → { ( 𝐹 ‘ 𝐴 ) } = ( 𝐹 “ { 𝐴 } ) ) | |
| 7 | 5 6 | sylanbr | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → { ( 𝐹 ‘ 𝐴 ) } = ( 𝐹 “ { 𝐴 } ) ) |
| 8 | 7 | unieqd | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ∪ { ( 𝐹 ‘ 𝐴 ) } = ∪ ( 𝐹 “ { 𝐴 } ) ) |
| 9 | 2 8 | eqtr3id | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝐴 ) = ∪ ( 𝐹 “ { 𝐴 } ) ) |
| 10 | 9 | ex | ⊢ ( Fun 𝐹 → ( 𝐴 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∪ ( 𝐹 “ { 𝐴 } ) ) ) |
| 11 | ndmfv | ⊢ ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∅ ) | |
| 12 | ndmima | ⊢ ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹 “ { 𝐴 } ) = ∅ ) | |
| 13 | 12 | unieqd | ⊢ ( ¬ 𝐴 ∈ dom 𝐹 → ∪ ( 𝐹 “ { 𝐴 } ) = ∪ ∅ ) |
| 14 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 15 | 13 14 | eqtrdi | ⊢ ( ¬ 𝐴 ∈ dom 𝐹 → ∪ ( 𝐹 “ { 𝐴 } ) = ∅ ) |
| 16 | 11 15 | eqtr4d | ⊢ ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∪ ( 𝐹 “ { 𝐴 } ) ) |
| 17 | 10 16 | pm2.61d1 | ⊢ ( Fun 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∪ ( 𝐹 “ { 𝐴 } ) ) |