This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Axiom of Choice (first form) of Enderton p. 49 implies our Axiom of Choice (in the form of ac3 ). The proof does not make use of AC. Note that the Axiom of Regularity is used by the proof. Specifically, elneq and preleq that are referenced in the proof each make use of Regularity for their derivations. (The reverse implication can be derived without using Regularity; see dfac2a .) (Contributed by NM, 5-Apr-2004) (Revised by Mario Carneiro, 26-Jun-2015) (Revised by AV, 16-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfac2b | ⊢ ( CHOICE → ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac3 | ⊢ ( CHOICE ↔ ∀ 𝑥 ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) | |
| 2 | nfra1 | ⊢ Ⅎ 𝑧 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) | |
| 3 | rsp | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑧 ∈ 𝑥 → ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) | |
| 4 | equid | ⊢ 𝑧 = 𝑧 | |
| 5 | neeq1 | ⊢ ( 𝑢 = 𝑧 → ( 𝑢 ≠ ∅ ↔ 𝑧 ≠ ∅ ) ) | |
| 6 | eqeq1 | ⊢ ( 𝑢 = 𝑧 → ( 𝑢 = 𝑧 ↔ 𝑧 = 𝑧 ) ) | |
| 7 | 5 6 | anbi12d | ⊢ ( 𝑢 = 𝑧 → ( ( 𝑢 ≠ ∅ ∧ 𝑢 = 𝑧 ) ↔ ( 𝑧 ≠ ∅ ∧ 𝑧 = 𝑧 ) ) ) |
| 8 | 7 | rspcev | ⊢ ( ( 𝑧 ∈ 𝑥 ∧ ( 𝑧 ≠ ∅ ∧ 𝑧 = 𝑧 ) ) → ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑢 = 𝑧 ) ) |
| 9 | 4 8 | mpanr2 | ⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑢 = 𝑧 ) ) |
| 10 | fveq2 | ⊢ ( 𝑢 = 𝑧 → ( 𝑓 ‘ 𝑢 ) = ( 𝑓 ‘ 𝑧 ) ) | |
| 11 | 10 | preq1d | ⊢ ( 𝑢 = 𝑧 → { ( 𝑓 ‘ 𝑢 ) , 𝑢 } = { ( 𝑓 ‘ 𝑧 ) , 𝑢 } ) |
| 12 | preq2 | ⊢ ( 𝑢 = 𝑧 → { ( 𝑓 ‘ 𝑧 ) , 𝑢 } = { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ) | |
| 13 | 11 12 | eqtr2d | ⊢ ( 𝑢 = 𝑧 → { ( 𝑓 ‘ 𝑧 ) , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) |
| 14 | 13 | anim2i | ⊢ ( ( 𝑢 ≠ ∅ ∧ 𝑢 = 𝑧 ) → ( 𝑢 ≠ ∅ ∧ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) |
| 15 | 14 | reximi | ⊢ ( ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑢 = 𝑧 ) → ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) |
| 16 | 9 15 | syl | ⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) |
| 17 | prex | ⊢ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ∈ V | |
| 18 | eqeq1 | ⊢ ( 𝑔 = { ( 𝑓 ‘ 𝑧 ) , 𝑧 } → ( 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ↔ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) | |
| 19 | 18 | anbi2d | ⊢ ( 𝑔 = { ( 𝑓 ‘ 𝑧 ) , 𝑧 } → ( ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ↔ ( 𝑢 ≠ ∅ ∧ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) ) |
| 20 | 19 | rexbidv | ⊢ ( 𝑔 = { ( 𝑓 ‘ 𝑧 ) , 𝑧 } → ( ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ↔ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) ) |
| 21 | 17 20 | elab | ⊢ ( { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ↔ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) |
| 22 | 16 21 | sylibr | ⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ) |
| 23 | vex | ⊢ 𝑧 ∈ V | |
| 24 | 23 | prid2 | ⊢ 𝑧 ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } |
| 25 | fvex | ⊢ ( 𝑓 ‘ 𝑧 ) ∈ V | |
| 26 | 25 | prid1 | ⊢ ( 𝑓 ‘ 𝑧 ) ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } |
| 27 | 24 26 | pm3.2i | ⊢ ( 𝑧 ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ∧ ( 𝑓 ‘ 𝑧 ) ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ) |
| 28 | eleq2 | ⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑧 ) , 𝑧 } → ( 𝑧 ∈ 𝑣 ↔ 𝑧 ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ) ) | |
| 29 | eleq2 | ⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑧 ) , 𝑧 } → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ↔ ( 𝑓 ‘ 𝑧 ) ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ) ) | |
| 30 | 28 29 | anbi12d | ⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑧 ) , 𝑧 } → ( ( 𝑧 ∈ 𝑣 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ) ↔ ( 𝑧 ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ∧ ( 𝑓 ‘ 𝑧 ) ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ) ) ) |
| 31 | 30 | rspcev | ⊢ ( ( { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ∧ ( 𝑧 ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ∧ ( 𝑓 ‘ 𝑧 ) ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ) ) → ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ) ) |
| 32 | 22 27 31 | sylancl | ⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ) ) |
| 33 | eleq1 | ⊢ ( 𝑤 = ( 𝑓 ‘ 𝑧 ) → ( 𝑤 ∈ 𝑧 ↔ ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) | |
| 34 | eleq1 | ⊢ ( 𝑤 = ( 𝑓 ‘ 𝑧 ) → ( 𝑤 ∈ 𝑣 ↔ ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ) ) | |
| 35 | 34 | anbi2d | ⊢ ( 𝑤 = ( 𝑓 ‘ 𝑧 ) → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ( 𝑧 ∈ 𝑣 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ) ) ) |
| 36 | 35 | rexbidv | ⊢ ( 𝑤 = ( 𝑓 ‘ 𝑧 ) → ( ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ) ) ) |
| 37 | 33 36 | anbi12d | ⊢ ( 𝑤 = ( 𝑓 ‘ 𝑧 ) → ( ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ↔ ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ) ) ) ) |
| 38 | 25 37 | spcev | ⊢ ( ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ) ) → ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 39 | 32 38 | sylan2 | ⊢ ( ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) ) → ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 40 | 39 | ex | ⊢ ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
| 41 | 3 40 | syl8 | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑧 ∈ 𝑥 → ( 𝑧 ≠ ∅ → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ) ) |
| 42 | 41 | impd | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ) |
| 43 | 42 | pm2.43d | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
| 44 | df-rex | ⊢ ( ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ∃ 𝑣 ( 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ∧ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) | |
| 45 | vex | ⊢ 𝑣 ∈ V | |
| 46 | eqeq1 | ⊢ ( 𝑔 = 𝑣 → ( 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ↔ 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) | |
| 47 | 46 | anbi2d | ⊢ ( 𝑔 = 𝑣 → ( ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ↔ ( 𝑢 ≠ ∅ ∧ 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) ) |
| 48 | 47 | rexbidv | ⊢ ( 𝑔 = 𝑣 → ( ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ↔ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) ) |
| 49 | 45 48 | elab | ⊢ ( 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ↔ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) |
| 50 | neeq1 | ⊢ ( 𝑧 = 𝑢 → ( 𝑧 ≠ ∅ ↔ 𝑢 ≠ ∅ ) ) | |
| 51 | fveq2 | ⊢ ( 𝑧 = 𝑢 → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑢 ) ) | |
| 52 | 51 | eleq1d | ⊢ ( 𝑧 = 𝑢 → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝑓 ‘ 𝑢 ) ∈ 𝑧 ) ) |
| 53 | eleq2 | ⊢ ( 𝑧 = 𝑢 → ( ( 𝑓 ‘ 𝑢 ) ∈ 𝑧 ↔ ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ) | |
| 54 | 52 53 | bitrd | ⊢ ( 𝑧 = 𝑢 → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ) |
| 55 | 50 54 | imbi12d | ⊢ ( 𝑧 = 𝑢 → ( ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( 𝑢 ≠ ∅ → ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ) ) |
| 56 | 55 | rspccv | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑢 ∈ 𝑥 → ( 𝑢 ≠ ∅ → ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ) ) |
| 57 | elneq | ⊢ ( 𝑤 ∈ 𝑧 → 𝑤 ≠ 𝑧 ) | |
| 58 | 57 | neneqd | ⊢ ( 𝑤 ∈ 𝑧 → ¬ 𝑤 = 𝑧 ) |
| 59 | vex | ⊢ 𝑤 ∈ V | |
| 60 | neqne | ⊢ ( ¬ 𝑤 = 𝑧 → 𝑤 ≠ 𝑧 ) | |
| 61 | prel12g | ⊢ ( ( 𝑤 ∈ V ∧ 𝑧 ∈ V ∧ 𝑤 ≠ 𝑧 ) → ( { 𝑤 , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ↔ ( 𝑤 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∧ 𝑧 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) ) | |
| 62 | 59 23 60 61 | mp3an12i | ⊢ ( ¬ 𝑤 = 𝑧 → ( { 𝑤 , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ↔ ( 𝑤 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∧ 𝑧 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) ) |
| 63 | eleq2 | ⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( 𝑤 ∈ 𝑣 ↔ 𝑤 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) | |
| 64 | eleq2 | ⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( 𝑧 ∈ 𝑣 ↔ 𝑧 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) | |
| 65 | 63 64 | anbi12d | ⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( 𝑤 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣 ) ↔ ( 𝑤 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∧ 𝑧 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) ) |
| 66 | ancom | ⊢ ( ( 𝑤 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣 ) ↔ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) | |
| 67 | 65 66 | bitr3di | ⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( 𝑤 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∧ 𝑧 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ↔ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 68 | 62 67 | sylan9bbr | ⊢ ( ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∧ ¬ 𝑤 = 𝑧 ) → ( { 𝑤 , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ↔ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 69 | 58 68 | sylan2 | ⊢ ( ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∧ 𝑤 ∈ 𝑧 ) → ( { 𝑤 , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ↔ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 70 | 69 | adantrr | ⊢ ( ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ) → ( { 𝑤 , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ↔ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 71 | 70 | pm5.32da | ⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ∧ { 𝑤 , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ↔ ( ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ∧ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
| 72 | 23 | preleq | ⊢ ( ( ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ∧ { 𝑤 , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) → ( 𝑤 = ( 𝑓 ‘ 𝑢 ) ∧ 𝑧 = 𝑢 ) ) |
| 73 | 71 72 | biimtrrdi | ⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ∧ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → ( 𝑤 = ( 𝑓 ‘ 𝑢 ) ∧ 𝑧 = 𝑢 ) ) ) |
| 74 | 51 | eqeq2d | ⊢ ( 𝑧 = 𝑢 → ( 𝑤 = ( 𝑓 ‘ 𝑧 ) ↔ 𝑤 = ( 𝑓 ‘ 𝑢 ) ) ) |
| 75 | 74 | biimparc | ⊢ ( ( 𝑤 = ( 𝑓 ‘ 𝑢 ) ∧ 𝑧 = 𝑢 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) |
| 76 | 73 75 | syl6 | ⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ∧ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 77 | 76 | exp4c | ⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( 𝑤 ∈ 𝑧 → ( ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 78 | 77 | com13 | ⊢ ( ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 → ( 𝑤 ∈ 𝑧 → ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 79 | 56 78 | syl8 | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑢 ∈ 𝑥 → ( 𝑢 ≠ ∅ → ( 𝑤 ∈ 𝑧 → ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) ) ) |
| 80 | 79 | com4r | ⊢ ( 𝑤 ∈ 𝑧 → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑢 ∈ 𝑥 → ( 𝑢 ≠ ∅ → ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) ) ) |
| 81 | 80 | imp | ⊢ ( ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( 𝑢 ∈ 𝑥 → ( 𝑢 ≠ ∅ → ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) ) |
| 82 | 81 | imp4a | ⊢ ( ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( 𝑢 ∈ 𝑥 → ( ( 𝑢 ≠ ∅ ∧ 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 83 | 82 | com3l | ⊢ ( 𝑢 ∈ 𝑥 → ( ( 𝑢 ≠ ∅ ∧ 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) → ( ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 84 | 83 | rexlimiv | ⊢ ( ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) → ( ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 85 | 49 84 | sylbi | ⊢ ( 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } → ( ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 86 | 85 | expd | ⊢ ( 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } → ( 𝑤 ∈ 𝑧 → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 87 | 86 | com13 | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑤 ∈ 𝑧 → ( 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 88 | 87 | imp4b | ⊢ ( ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ∧ 𝑤 ∈ 𝑧 ) → ( ( 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ∧ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 89 | 88 | exlimdv | ⊢ ( ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ∧ 𝑤 ∈ 𝑧 ) → ( ∃ 𝑣 ( 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ∧ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 90 | 44 89 | biimtrid | ⊢ ( ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ∧ 𝑤 ∈ 𝑧 ) → ( ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 91 | 90 | expimpd | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 92 | 91 | alrimiv | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∀ 𝑤 ( ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 93 | mo2icl | ⊢ ( ∀ 𝑤 ( ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) → ∃* 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) | |
| 94 | 92 93 | syl | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃* 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 95 | 43 94 | jctird | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ( ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ∧ ∃* 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ) |
| 96 | df-reu | ⊢ ( ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ∃! 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) | |
| 97 | df-eu | ⊢ ( ∃! 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ↔ ( ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ∧ ∃* 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) | |
| 98 | 96 97 | bitri | ⊢ ( ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ( ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ∧ ∃* 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
| 99 | 95 98 | imbitrrdi | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 100 | 99 | expd | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑧 ∈ 𝑥 → ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
| 101 | 2 100 | ralrimi | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 102 | vex | ⊢ 𝑓 ∈ V | |
| 103 | 102 | rnex | ⊢ ran 𝑓 ∈ V |
| 104 | p0ex | ⊢ { ∅ } ∈ V | |
| 105 | 103 104 | unex | ⊢ ( ran 𝑓 ∪ { ∅ } ) ∈ V |
| 106 | vex | ⊢ 𝑥 ∈ V | |
| 107 | 105 106 | unex | ⊢ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ∈ V |
| 108 | 107 | pwex | ⊢ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ∈ V |
| 109 | ssun1 | ⊢ ( ran 𝑓 ∪ { ∅ } ) ⊆ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) | |
| 110 | fvrn0 | ⊢ ( 𝑓 ‘ 𝑢 ) ∈ ( ran 𝑓 ∪ { ∅ } ) | |
| 111 | 109 110 | sselii | ⊢ ( 𝑓 ‘ 𝑢 ) ∈ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) |
| 112 | elun2 | ⊢ ( 𝑢 ∈ 𝑥 → 𝑢 ∈ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) | |
| 113 | prssi | ⊢ ( ( ( 𝑓 ‘ 𝑢 ) ∈ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ∧ 𝑢 ∈ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) → { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ⊆ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) | |
| 114 | 111 112 113 | sylancr | ⊢ ( 𝑢 ∈ 𝑥 → { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ⊆ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) |
| 115 | prex | ⊢ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∈ V | |
| 116 | 115 | elpw | ⊢ ( { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∈ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ↔ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ⊆ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) |
| 117 | 114 116 | sylibr | ⊢ ( 𝑢 ∈ 𝑥 → { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∈ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) |
| 118 | eleq1 | ⊢ ( 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( 𝑔 ∈ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ↔ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∈ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) ) | |
| 119 | 117 118 | syl5ibrcom | ⊢ ( 𝑢 ∈ 𝑥 → ( 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → 𝑔 ∈ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) ) |
| 120 | 119 | adantld | ⊢ ( 𝑢 ∈ 𝑥 → ( ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) → 𝑔 ∈ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) ) |
| 121 | 120 | rexlimiv | ⊢ ( ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) → 𝑔 ∈ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) |
| 122 | 121 | abssi | ⊢ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ⊆ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) |
| 123 | 108 122 | ssexi | ⊢ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ∈ V |
| 124 | rexeq | ⊢ ( 𝑦 = { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } → ( ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) | |
| 125 | 124 | reubidv | ⊢ ( 𝑦 = { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } → ( ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 126 | 125 | imbi2d | ⊢ ( 𝑦 = { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } → ( ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ↔ ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
| 127 | 126 | ralbidv | ⊢ ( 𝑦 = { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ↔ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
| 128 | 123 127 | spcev | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 129 | 101 128 | syl | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 130 | 129 | exlimiv | ⊢ ( ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 131 | 130 | alimi | ⊢ ( ∀ 𝑥 ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 132 | 1 131 | sylbi | ⊢ ( CHOICE → ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |