This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of two unordered pairs. (Contributed by NM, 17-Oct-1996) (Revised by AV, 9-Dec-2018) (Revised by AV, 12-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prel12g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq12nebg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) | |
| 2 | prid1g | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 , 𝐷 } ) | |
| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ { 𝐴 , 𝐷 } ) |
| 4 | 3 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐴 = 𝐶 ) → 𝐴 ∈ { 𝐴 , 𝐷 } ) |
| 5 | preq1 | ⊢ ( 𝐴 = 𝐶 → { 𝐴 , 𝐷 } = { 𝐶 , 𝐷 } ) | |
| 6 | 5 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐴 = 𝐶 ) → { 𝐴 , 𝐷 } = { 𝐶 , 𝐷 } ) |
| 7 | 4 6 | eleqtrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐴 = 𝐶 ) → 𝐴 ∈ { 𝐶 , 𝐷 } ) |
| 8 | 7 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 = 𝐶 → 𝐴 ∈ { 𝐶 , 𝐷 } ) ) |
| 9 | prid2g | ⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ { 𝐶 , 𝐵 } ) | |
| 10 | 9 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ { 𝐶 , 𝐵 } ) |
| 11 | preq2 | ⊢ ( 𝐵 = 𝐷 → { 𝐶 , 𝐵 } = { 𝐶 , 𝐷 } ) | |
| 12 | 11 | eleq2d | ⊢ ( 𝐵 = 𝐷 → ( 𝐵 ∈ { 𝐶 , 𝐵 } ↔ 𝐵 ∈ { 𝐶 , 𝐷 } ) ) |
| 13 | 10 12 | syl5ibcom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 = 𝐷 → 𝐵 ∈ { 𝐶 , 𝐷 } ) ) |
| 14 | 8 13 | anim12d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) ) ) |
| 15 | prid2g | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐶 , 𝐴 } ) | |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ { 𝐶 , 𝐴 } ) |
| 17 | preq2 | ⊢ ( 𝐴 = 𝐷 → { 𝐶 , 𝐴 } = { 𝐶 , 𝐷 } ) | |
| 18 | 17 | eleq2d | ⊢ ( 𝐴 = 𝐷 → ( 𝐴 ∈ { 𝐶 , 𝐴 } ↔ 𝐴 ∈ { 𝐶 , 𝐷 } ) ) |
| 19 | 16 18 | syl5ibcom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 = 𝐷 → 𝐴 ∈ { 𝐶 , 𝐷 } ) ) |
| 20 | prid1g | ⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ { 𝐵 , 𝐷 } ) | |
| 21 | 20 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ { 𝐵 , 𝐷 } ) |
| 22 | preq1 | ⊢ ( 𝐵 = 𝐶 → { 𝐵 , 𝐷 } = { 𝐶 , 𝐷 } ) | |
| 23 | 22 | eleq2d | ⊢ ( 𝐵 = 𝐶 → ( 𝐵 ∈ { 𝐵 , 𝐷 } ↔ 𝐵 ∈ { 𝐶 , 𝐷 } ) ) |
| 24 | 21 23 | syl5ibcom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 = 𝐶 → 𝐵 ∈ { 𝐶 , 𝐷 } ) ) |
| 25 | 19 24 | anim12d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) ) ) |
| 26 | 14 25 | jaod | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) → ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) ) ) |
| 27 | elprg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) ) | |
| 28 | 27 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ∈ { 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) ) |
| 29 | elprg | ⊢ ( 𝐵 ∈ 𝑊 → ( 𝐵 ∈ { 𝐶 , 𝐷 } ↔ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) | |
| 30 | 29 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ∈ { 𝐶 , 𝐷 } ↔ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) |
| 31 | 28 30 | anbi12d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) ↔ ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) ) |
| 32 | eqtr3 | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) → 𝐴 = 𝐵 ) | |
| 33 | eqneqall | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐵 → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) | |
| 34 | 32 33 | syl | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) → ( 𝐴 ≠ 𝐵 → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 35 | olc | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) | |
| 36 | 35 | a1d | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( 𝐴 ≠ 𝐵 → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 37 | orc | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) | |
| 38 | 37 | a1d | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐴 ≠ 𝐵 → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 39 | eqtr3 | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) → 𝐴 = 𝐵 ) | |
| 40 | 39 33 | syl | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) → ( 𝐴 ≠ 𝐵 → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 41 | 34 36 38 40 | ccase | ⊢ ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) → ( 𝐴 ≠ 𝐵 → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 42 | 41 | com12 | ⊢ ( 𝐴 ≠ 𝐵 → ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 43 | 42 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 44 | 31 43 | sylbid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 45 | 26 44 | impbid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ↔ ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) ) ) |
| 46 | 1 45 | bitrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) ) ) |