This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem ptcls is an equivalent of the axiom of choice. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfac14 | ⊢ ( CHOICE ↔ ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑘 = 𝑥 → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 𝑥 ) ) | |
| 2 | 1 | unieqd | ⊢ ( 𝑘 = 𝑥 → ∪ ( 𝑓 ‘ 𝑘 ) = ∪ ( 𝑓 ‘ 𝑥 ) ) |
| 3 | 2 | pweqd | ⊢ ( 𝑘 = 𝑥 → 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) = 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) |
| 4 | 3 | cbvixpv | ⊢ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) = X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) |
| 5 | 4 | eleq2i | ⊢ ( 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ↔ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) |
| 6 | simplr | ⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → 𝑓 : dom 𝑓 ⟶ Top ) | |
| 7 | 6 | feqmptd | ⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → 𝑓 = ( 𝑘 ∈ dom 𝑓 ↦ ( 𝑓 ‘ 𝑘 ) ) ) |
| 8 | 7 | fveq2d | ⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → ( ∏t ‘ 𝑓 ) = ( ∏t ‘ ( 𝑘 ∈ dom 𝑓 ↦ ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 9 | 8 | fveq2d | ⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → ( cls ‘ ( ∏t ‘ 𝑓 ) ) = ( cls ‘ ( ∏t ‘ ( 𝑘 ∈ dom 𝑓 ↦ ( 𝑓 ‘ 𝑘 ) ) ) ) ) |
| 10 | 9 | fveq1d | ⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = ( ( cls ‘ ( ∏t ‘ ( 𝑘 ∈ dom 𝑓 ↦ ( 𝑓 ‘ 𝑘 ) ) ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) ) |
| 11 | eqid | ⊢ ( ∏t ‘ ( 𝑘 ∈ dom 𝑓 ↦ ( 𝑓 ‘ 𝑘 ) ) ) = ( ∏t ‘ ( 𝑘 ∈ dom 𝑓 ↦ ( 𝑓 ‘ 𝑘 ) ) ) | |
| 12 | vex | ⊢ 𝑓 ∈ V | |
| 13 | 12 | dmex | ⊢ dom 𝑓 ∈ V |
| 14 | 13 | a1i | ⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → dom 𝑓 ∈ V ) |
| 15 | 6 | ffvelcdmda | ⊢ ( ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) ∧ 𝑘 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑘 ) ∈ Top ) |
| 16 | toptopon2 | ⊢ ( ( 𝑓 ‘ 𝑘 ) ∈ Top ↔ ( 𝑓 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝑓 ‘ 𝑘 ) ) ) | |
| 17 | 15 16 | sylib | ⊢ ( ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) ∧ 𝑘 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝑓 ‘ 𝑘 ) ) ) |
| 18 | simpr | ⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) | |
| 19 | 18 5 | sylibr | ⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ) |
| 20 | vex | ⊢ 𝑠 ∈ V | |
| 21 | 20 | elixp | ⊢ ( 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ↔ ( 𝑠 Fn dom 𝑓 ∧ ∀ 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ∈ 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ) ) |
| 22 | 21 | simprbi | ⊢ ( 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) → ∀ 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ∈ 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ) |
| 23 | 19 22 | syl | ⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → ∀ 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ∈ 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ) |
| 24 | 23 | r19.21bi | ⊢ ( ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) ∧ 𝑘 ∈ dom 𝑓 ) → ( 𝑠 ‘ 𝑘 ) ∈ 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ) |
| 25 | 24 | elpwid | ⊢ ( ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) ∧ 𝑘 ∈ dom 𝑓 ) → ( 𝑠 ‘ 𝑘 ) ⊆ ∪ ( 𝑓 ‘ 𝑘 ) ) |
| 26 | fvex | ⊢ ( 𝑠 ‘ 𝑘 ) ∈ V | |
| 27 | 13 26 | iunex | ⊢ ∪ 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ∈ V |
| 28 | simpll | ⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → CHOICE ) | |
| 29 | acacni | ⊢ ( ( CHOICE ∧ dom 𝑓 ∈ V ) → AC dom 𝑓 = V ) | |
| 30 | 28 13 29 | sylancl | ⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → AC dom 𝑓 = V ) |
| 31 | 27 30 | eleqtrrid | ⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → ∪ 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ∈ AC dom 𝑓 ) |
| 32 | 11 14 17 25 31 | ptclsg | ⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → ( ( cls ‘ ( ∏t ‘ ( 𝑘 ∈ dom 𝑓 ↦ ( 𝑓 ‘ 𝑘 ) ) ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
| 33 | 10 32 | eqtrd | ⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
| 34 | 5 33 | sylan2b | ⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ) → ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
| 35 | 34 | ralrimiva | ⊢ ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
| 36 | 35 | ex | ⊢ ( CHOICE → ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |
| 37 | 36 | alrimiv | ⊢ ( CHOICE → ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |
| 38 | vex | ⊢ 𝑔 ∈ V | |
| 39 | 38 | dmex | ⊢ dom 𝑔 ∈ V |
| 40 | 39 | a1i | ⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → dom 𝑔 ∈ V ) |
| 41 | fvex | ⊢ ( 𝑔 ‘ 𝑥 ) ∈ V | |
| 42 | 41 | a1i | ⊢ ( ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) ∧ 𝑥 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑥 ) ∈ V ) |
| 43 | simplrr | ⊢ ( ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) ∧ 𝑥 ∈ dom 𝑔 ) → ∅ ∉ ran 𝑔 ) | |
| 44 | df-nel | ⊢ ( ∅ ∉ ran 𝑔 ↔ ¬ ∅ ∈ ran 𝑔 ) | |
| 45 | 43 44 | sylib | ⊢ ( ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) ∧ 𝑥 ∈ dom 𝑔 ) → ¬ ∅ ∈ ran 𝑔 ) |
| 46 | funforn | ⊢ ( Fun 𝑔 ↔ 𝑔 : dom 𝑔 –onto→ ran 𝑔 ) | |
| 47 | fof | ⊢ ( 𝑔 : dom 𝑔 –onto→ ran 𝑔 → 𝑔 : dom 𝑔 ⟶ ran 𝑔 ) | |
| 48 | 46 47 | sylbi | ⊢ ( Fun 𝑔 → 𝑔 : dom 𝑔 ⟶ ran 𝑔 ) |
| 49 | 48 | ad2antrl | ⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → 𝑔 : dom 𝑔 ⟶ ran 𝑔 ) |
| 50 | 49 | ffvelcdmda | ⊢ ( ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) ∧ 𝑥 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑥 ) ∈ ran 𝑔 ) |
| 51 | eleq1 | ⊢ ( ( 𝑔 ‘ 𝑥 ) = ∅ → ( ( 𝑔 ‘ 𝑥 ) ∈ ran 𝑔 ↔ ∅ ∈ ran 𝑔 ) ) | |
| 52 | 50 51 | syl5ibcom | ⊢ ( ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) ∧ 𝑥 ∈ dom 𝑔 ) → ( ( 𝑔 ‘ 𝑥 ) = ∅ → ∅ ∈ ran 𝑔 ) ) |
| 53 | 52 | necon3bd | ⊢ ( ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) ∧ 𝑥 ∈ dom 𝑔 ) → ( ¬ ∅ ∈ ran 𝑔 → ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) ) |
| 54 | 45 53 | mpd | ⊢ ( ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) ∧ 𝑥 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) |
| 55 | eqid | ⊢ 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) = 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) | |
| 56 | eqid | ⊢ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } = { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } | |
| 57 | eqid | ⊢ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) = ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) | |
| 58 | fveq1 | ⊢ ( 𝑠 = 𝑔 → ( 𝑠 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) ) | |
| 59 | 58 | ixpeq2dv | ⊢ ( 𝑠 = 𝑔 → X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) = X 𝑘 ∈ dom 𝑔 ( 𝑔 ‘ 𝑘 ) ) |
| 60 | fveq2 | ⊢ ( 𝑘 = 𝑥 → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑥 ) ) | |
| 61 | 60 | cbvixpv | ⊢ X 𝑘 ∈ dom 𝑔 ( 𝑔 ‘ 𝑘 ) = X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) |
| 62 | 59 61 | eqtrdi | ⊢ ( 𝑠 = 𝑔 → X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) = X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ) |
| 63 | 62 | fveq2d | ⊢ ( 𝑠 = 𝑔 → ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) = ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ) ) |
| 64 | 58 | fveq2d | ⊢ ( 𝑠 = 𝑔 → ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) = ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑘 ) ) ) |
| 65 | 64 | ixpeq2dv | ⊢ ( 𝑠 = 𝑔 → X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑘 ) ) ) |
| 66 | 60 | unieqd | ⊢ ( 𝑘 = 𝑥 → ∪ ( 𝑔 ‘ 𝑘 ) = ∪ ( 𝑔 ‘ 𝑥 ) ) |
| 67 | 66 | pweqd | ⊢ ( 𝑘 = 𝑥 → 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) = 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ) |
| 68 | 67 | sneqd | ⊢ ( 𝑘 = 𝑥 → { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } = { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) |
| 69 | 60 68 | uneq12d | ⊢ ( 𝑘 = 𝑥 → ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) |
| 70 | 69 | pweqd | ⊢ ( 𝑘 = 𝑥 → 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) = 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) |
| 71 | 67 | eleq1d | ⊢ ( 𝑘 = 𝑥 → ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 ↔ 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 ) ) |
| 72 | 69 | eqeq2d | ⊢ ( 𝑘 = 𝑥 → ( 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ↔ 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) ) |
| 73 | 71 72 | imbi12d | ⊢ ( 𝑘 = 𝑥 → ( ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) ↔ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) ) ) |
| 74 | 70 73 | rabeqbidv | ⊢ ( 𝑘 = 𝑥 → { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } = { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) |
| 75 | 74 | fveq2d | ⊢ ( 𝑘 = 𝑥 → ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) = ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) |
| 76 | 75 60 | fveq12d | ⊢ ( 𝑘 = 𝑥 → ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑘 ) ) = ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑥 ) ) ) |
| 77 | 76 | cbvixpv | ⊢ X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑘 ) ) = X 𝑥 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑥 ) ) |
| 78 | 65 77 | eqtrdi | ⊢ ( 𝑠 = 𝑔 → X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) = X 𝑥 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑥 ) ) ) |
| 79 | 63 78 | eqeq12d | ⊢ ( 𝑠 = 𝑔 → ( ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ↔ ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ) = X 𝑥 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 80 | simpl | ⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) | |
| 81 | snex | ⊢ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ∈ V | |
| 82 | 41 81 | unex | ⊢ ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∈ V |
| 83 | ssun2 | ⊢ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ⊆ ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) | |
| 84 | 41 | uniex | ⊢ ∪ ( 𝑔 ‘ 𝑥 ) ∈ V |
| 85 | 84 | pwex | ⊢ 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ V |
| 86 | 85 | snid | ⊢ 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } |
| 87 | 83 86 | sselii | ⊢ 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) |
| 88 | epttop | ⊢ ( ( ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∈ V ∧ 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) → { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ∈ ( TopOn ‘ ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) ) | |
| 89 | 82 87 88 | mp2an | ⊢ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ∈ ( TopOn ‘ ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) |
| 90 | 89 | topontopi | ⊢ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ∈ Top |
| 91 | 90 | a1i | ⊢ ( ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) ∧ 𝑥 ∈ dom 𝑔 ) → { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ∈ Top ) |
| 92 | 91 | fmpttd | ⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) : dom 𝑔 ⟶ Top ) |
| 93 | 39 | mptex | ⊢ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ∈ V |
| 94 | id | ⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) | |
| 95 | dmeq | ⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → dom 𝑓 = dom ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) | |
| 96 | 82 | pwex | ⊢ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∈ V |
| 97 | 96 | rabex | ⊢ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ∈ V |
| 98 | eqid | ⊢ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) | |
| 99 | 97 98 | dmmpti | ⊢ dom ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) = dom 𝑔 |
| 100 | 95 99 | eqtrdi | ⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → dom 𝑓 = dom 𝑔 ) |
| 101 | 94 100 | feq12d | ⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → ( 𝑓 : dom 𝑓 ⟶ Top ↔ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) : dom 𝑔 ⟶ Top ) ) |
| 102 | 100 | ixpeq1d | ⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) = X 𝑘 ∈ dom 𝑔 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ) |
| 103 | fveq1 | ⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → ( 𝑓 ‘ 𝑘 ) = ( ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ‘ 𝑘 ) ) | |
| 104 | fveq2 | ⊢ ( 𝑥 = 𝑘 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑘 ) ) | |
| 105 | 104 | unieqd | ⊢ ( 𝑥 = 𝑘 → ∪ ( 𝑔 ‘ 𝑥 ) = ∪ ( 𝑔 ‘ 𝑘 ) ) |
| 106 | 105 | pweqd | ⊢ ( 𝑥 = 𝑘 → 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) = 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ) |
| 107 | 106 | sneqd | ⊢ ( 𝑥 = 𝑘 → { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } = { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) |
| 108 | 104 107 | uneq12d | ⊢ ( 𝑥 = 𝑘 → ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
| 109 | 108 | pweqd | ⊢ ( 𝑥 = 𝑘 → 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) = 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
| 110 | 106 | eleq1d | ⊢ ( 𝑥 = 𝑘 → ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 ↔ 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 ) ) |
| 111 | 108 | eqeq2d | ⊢ ( 𝑥 = 𝑘 → ( 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ↔ 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) ) |
| 112 | 110 111 | imbi12d | ⊢ ( 𝑥 = 𝑘 → ( ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) ↔ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) ) ) |
| 113 | 109 112 | rabeqbidv | ⊢ ( 𝑥 = 𝑘 → { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } = { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) |
| 114 | fvex | ⊢ ( 𝑔 ‘ 𝑘 ) ∈ V | |
| 115 | snex | ⊢ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ∈ V | |
| 116 | 114 115 | unex | ⊢ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∈ V |
| 117 | 116 | pwex | ⊢ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∈ V |
| 118 | 117 | rabex | ⊢ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ∈ V |
| 119 | 113 98 118 | fvmpt | ⊢ ( 𝑘 ∈ dom 𝑔 → ( ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ‘ 𝑘 ) = { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) |
| 120 | 103 119 | sylan9eq | ⊢ ( ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ∧ 𝑘 ∈ dom 𝑔 ) → ( 𝑓 ‘ 𝑘 ) = { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) |
| 121 | 120 | unieqd | ⊢ ( ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ∧ 𝑘 ∈ dom 𝑔 ) → ∪ ( 𝑓 ‘ 𝑘 ) = ∪ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) |
| 122 | ssun2 | ⊢ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ⊆ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) | |
| 123 | 114 | uniex | ⊢ ∪ ( 𝑔 ‘ 𝑘 ) ∈ V |
| 124 | 123 | pwex | ⊢ 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ V |
| 125 | 124 | snid | ⊢ 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } |
| 126 | 122 125 | sselii | ⊢ 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) |
| 127 | epttop | ⊢ ( ( ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∈ V ∧ 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) → { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ∈ ( TopOn ‘ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) ) | |
| 128 | 116 126 127 | mp2an | ⊢ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ∈ ( TopOn ‘ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
| 129 | 128 | toponunii | ⊢ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) = ∪ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } |
| 130 | 121 129 | eqtr4di | ⊢ ( ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ∧ 𝑘 ∈ dom 𝑔 ) → ∪ ( 𝑓 ‘ 𝑘 ) = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
| 131 | 130 | pweqd | ⊢ ( ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ∧ 𝑘 ∈ dom 𝑔 ) → 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) = 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
| 132 | 131 | ixpeq2dva | ⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → X 𝑘 ∈ dom 𝑔 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) = X 𝑘 ∈ dom 𝑔 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
| 133 | 102 132 | eqtrd | ⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) = X 𝑘 ∈ dom 𝑔 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
| 134 | 2fveq3 | ⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → ( cls ‘ ( ∏t ‘ 𝑓 ) ) = ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ) | |
| 135 | 100 | ixpeq1d | ⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) = X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) |
| 136 | 134 135 | fveq12d | ⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) ) |
| 137 | 100 | ixpeq1d | ⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
| 138 | 120 | fveq2d | ⊢ ( ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ∧ 𝑘 ∈ dom 𝑔 ) → ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) = ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ) |
| 139 | 138 | fveq1d | ⊢ ( ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ∧ 𝑘 ∈ dom 𝑔 ) → ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) = ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
| 140 | 139 | ixpeq2dva | ⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → X 𝑘 ∈ dom 𝑔 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
| 141 | 137 140 | eqtrd | ⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
| 142 | 136 141 | eqeq12d | ⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → ( ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ↔ ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |
| 143 | 133 142 | raleqbidv | ⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → ( ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ↔ ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑔 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |
| 144 | 101 143 | imbi12d | ⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → ( ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ↔ ( ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) : dom 𝑔 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑔 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) ) |
| 145 | 93 144 | spcv | ⊢ ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) → ( ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) : dom 𝑔 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑔 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |
| 146 | 80 92 145 | sylc | ⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑔 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
| 147 | simprl | ⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → Fun 𝑔 ) | |
| 148 | 147 | funfnd | ⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → 𝑔 Fn dom 𝑔 ) |
| 149 | ssun1 | ⊢ ( 𝑔 ‘ 𝑘 ) ⊆ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) | |
| 150 | 114 | elpw | ⊢ ( ( 𝑔 ‘ 𝑘 ) ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ↔ ( 𝑔 ‘ 𝑘 ) ⊆ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
| 151 | 149 150 | mpbir | ⊢ ( 𝑔 ‘ 𝑘 ) ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) |
| 152 | 151 | rgenw | ⊢ ∀ 𝑘 ∈ dom 𝑔 ( 𝑔 ‘ 𝑘 ) ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) |
| 153 | 38 | elixp | ⊢ ( 𝑔 ∈ X 𝑘 ∈ dom 𝑔 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ↔ ( 𝑔 Fn dom 𝑔 ∧ ∀ 𝑘 ∈ dom 𝑔 ( 𝑔 ‘ 𝑘 ) ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) ) |
| 154 | 148 152 153 | sylanblrc | ⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → 𝑔 ∈ X 𝑘 ∈ dom 𝑔 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
| 155 | 79 146 154 | rspcdva | ⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ) = X 𝑥 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑥 ) ) ) |
| 156 | 40 42 54 55 56 57 155 | dfac14lem | ⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) |
| 157 | 156 | ex | ⊢ ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) → ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) → X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) ) |
| 158 | 157 | alrimiv | ⊢ ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) → ∀ 𝑔 ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) → X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) ) |
| 159 | dfac9 | ⊢ ( CHOICE ↔ ∀ 𝑔 ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) → X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) ) | |
| 160 | 158 159 | sylibr | ⊢ ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) → CHOICE ) |
| 161 | 37 160 | impbii | ⊢ ( CHOICE ↔ ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |