This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A choice equivalent: every set has choice sets of every length. (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acacni | ⊢ ( ( CHOICE ∧ 𝐴 ∈ 𝑉 ) → AC 𝐴 = V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( CHOICE ∧ 𝐴 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | simpl | ⊢ ( ( CHOICE ∧ 𝐴 ∈ 𝑉 ) → CHOICE ) | |
| 4 | dfac10 | ⊢ ( CHOICE ↔ dom card = V ) | |
| 5 | 3 4 | sylib | ⊢ ( ( CHOICE ∧ 𝐴 ∈ 𝑉 ) → dom card = V ) |
| 6 | 2 5 | eleqtrrid | ⊢ ( ( CHOICE ∧ 𝐴 ∈ 𝑉 ) → 𝑥 ∈ dom card ) |
| 7 | numacn | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ dom card → 𝑥 ∈ AC 𝐴 ) ) | |
| 8 | 1 6 7 | sylc | ⊢ ( ( CHOICE ∧ 𝐴 ∈ 𝑉 ) → 𝑥 ∈ AC 𝐴 ) |
| 9 | 2 | a1i | ⊢ ( ( CHOICE ∧ 𝐴 ∈ 𝑉 ) → 𝑥 ∈ V ) |
| 10 | 8 9 | 2thd | ⊢ ( ( CHOICE ∧ 𝐴 ∈ 𝑉 ) → ( 𝑥 ∈ AC 𝐴 ↔ 𝑥 ∈ V ) ) |
| 11 | 10 | eqrdv | ⊢ ( ( CHOICE ∧ 𝐴 ∈ 𝑉 ) → AC 𝐴 = V ) |