This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of the axiom of choice with a statement related to ac9 ; definition AC3 of Schechter p. 139. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfac9 | ⊢ ( CHOICE ↔ ∀ 𝑓 ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac3 | ⊢ ( CHOICE ↔ ∀ 𝑠 ∃ 𝑔 ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) | |
| 2 | vex | ⊢ 𝑓 ∈ V | |
| 3 | 2 | rnex | ⊢ ran 𝑓 ∈ V |
| 4 | raleq | ⊢ ( 𝑠 = ran 𝑓 → ( ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ↔ ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) ) | |
| 5 | 4 | exbidv | ⊢ ( 𝑠 = ran 𝑓 → ( ∃ 𝑔 ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ↔ ∃ 𝑔 ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) ) |
| 6 | 3 5 | spcv | ⊢ ( ∀ 𝑠 ∃ 𝑔 ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) → ∃ 𝑔 ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) |
| 7 | df-nel | ⊢ ( ∅ ∉ ran 𝑓 ↔ ¬ ∅ ∈ ran 𝑓 ) | |
| 8 | 7 | biimpi | ⊢ ( ∅ ∉ ran 𝑓 → ¬ ∅ ∈ ran 𝑓 ) |
| 9 | 8 | ad2antlr | ⊢ ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ 𝑥 ∈ dom 𝑓 ) → ¬ ∅ ∈ ran 𝑓 ) |
| 10 | fvelrn | ⊢ ( ( Fun 𝑓 ∧ 𝑥 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑥 ) ∈ ran 𝑓 ) | |
| 11 | 10 | adantlr | ⊢ ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ 𝑥 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑥 ) ∈ ran 𝑓 ) |
| 12 | eleq1 | ⊢ ( ( 𝑓 ‘ 𝑥 ) = ∅ → ( ( 𝑓 ‘ 𝑥 ) ∈ ran 𝑓 ↔ ∅ ∈ ran 𝑓 ) ) | |
| 13 | 11 12 | syl5ibcom | ⊢ ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ 𝑥 ∈ dom 𝑓 ) → ( ( 𝑓 ‘ 𝑥 ) = ∅ → ∅ ∈ ran 𝑓 ) ) |
| 14 | 13 | necon3bd | ⊢ ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ 𝑥 ∈ dom 𝑓 ) → ( ¬ ∅ ∈ ran 𝑓 → ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) ) |
| 15 | 9 14 | mpd | ⊢ ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ 𝑥 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) |
| 16 | 15 | adantlr | ⊢ ( ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) |
| 17 | neeq1 | ⊢ ( 𝑡 = ( 𝑓 ‘ 𝑥 ) → ( 𝑡 ≠ ∅ ↔ ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) ) | |
| 18 | fveq2 | ⊢ ( 𝑡 = ( 𝑓 ‘ 𝑥 ) → ( 𝑔 ‘ 𝑡 ) = ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 19 | id | ⊢ ( 𝑡 = ( 𝑓 ‘ 𝑥 ) → 𝑡 = ( 𝑓 ‘ 𝑥 ) ) | |
| 20 | 18 19 | eleq12d | ⊢ ( 𝑡 = ( 𝑓 ‘ 𝑥 ) → ( ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ↔ ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
| 21 | 17 20 | imbi12d | ⊢ ( 𝑡 = ( 𝑓 ‘ 𝑥 ) → ( ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ↔ ( ( 𝑓 ‘ 𝑥 ) ≠ ∅ → ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 22 | simplr | ⊢ ( ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ dom 𝑓 ) → ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) | |
| 23 | 10 | ad4ant14 | ⊢ ( ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑥 ) ∈ ran 𝑓 ) |
| 24 | 21 22 23 | rspcdva | ⊢ ( ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ dom 𝑓 ) → ( ( 𝑓 ‘ 𝑥 ) ≠ ∅ → ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
| 25 | 16 24 | mpd | ⊢ ( ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ dom 𝑓 ) → ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
| 26 | 25 | ralrimiva | ⊢ ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) → ∀ 𝑥 ∈ dom 𝑓 ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
| 27 | 2 | dmex | ⊢ dom 𝑓 ∈ V |
| 28 | mptelixpg | ⊢ ( dom 𝑓 ∈ V → ( ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ∈ X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ dom 𝑓 ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 29 | 27 28 | ax-mp | ⊢ ( ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ∈ X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ dom 𝑓 ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
| 30 | 26 29 | sylibr | ⊢ ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) → ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ∈ X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ) |
| 31 | 30 | ne0d | ⊢ ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) |
| 32 | 31 | ex | ⊢ ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) → ( ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) ) |
| 33 | 32 | exlimdv | ⊢ ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) → ( ∃ 𝑔 ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) ) |
| 34 | 6 33 | syl5com | ⊢ ( ∀ 𝑠 ∃ 𝑔 ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) → ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) ) |
| 35 | 34 | alrimiv | ⊢ ( ∀ 𝑠 ∃ 𝑔 ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) → ∀ 𝑓 ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) ) |
| 36 | fnresi | ⊢ ( I ↾ ( 𝑠 ∖ { ∅ } ) ) Fn ( 𝑠 ∖ { ∅ } ) | |
| 37 | fnfun | ⊢ ( ( I ↾ ( 𝑠 ∖ { ∅ } ) ) Fn ( 𝑠 ∖ { ∅ } ) → Fun ( I ↾ ( 𝑠 ∖ { ∅ } ) ) ) | |
| 38 | 36 37 | ax-mp | ⊢ Fun ( I ↾ ( 𝑠 ∖ { ∅ } ) ) |
| 39 | neldifsn | ⊢ ¬ ∅ ∈ ( 𝑠 ∖ { ∅ } ) | |
| 40 | vex | ⊢ 𝑠 ∈ V | |
| 41 | 40 | difexi | ⊢ ( 𝑠 ∖ { ∅ } ) ∈ V |
| 42 | resiexg | ⊢ ( ( 𝑠 ∖ { ∅ } ) ∈ V → ( I ↾ ( 𝑠 ∖ { ∅ } ) ) ∈ V ) | |
| 43 | 41 42 | ax-mp | ⊢ ( I ↾ ( 𝑠 ∖ { ∅ } ) ) ∈ V |
| 44 | funeq | ⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → ( Fun 𝑓 ↔ Fun ( I ↾ ( 𝑠 ∖ { ∅ } ) ) ) ) | |
| 45 | rneq | ⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → ran 𝑓 = ran ( I ↾ ( 𝑠 ∖ { ∅ } ) ) ) | |
| 46 | rnresi | ⊢ ran ( I ↾ ( 𝑠 ∖ { ∅ } ) ) = ( 𝑠 ∖ { ∅ } ) | |
| 47 | 45 46 | eqtrdi | ⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → ran 𝑓 = ( 𝑠 ∖ { ∅ } ) ) |
| 48 | 47 | eleq2d | ⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → ( ∅ ∈ ran 𝑓 ↔ ∅ ∈ ( 𝑠 ∖ { ∅ } ) ) ) |
| 49 | 48 | notbid | ⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → ( ¬ ∅ ∈ ran 𝑓 ↔ ¬ ∅ ∈ ( 𝑠 ∖ { ∅ } ) ) ) |
| 50 | 7 49 | bitrid | ⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → ( ∅ ∉ ran 𝑓 ↔ ¬ ∅ ∈ ( 𝑠 ∖ { ∅ } ) ) ) |
| 51 | 44 50 | anbi12d | ⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ↔ ( Fun ( I ↾ ( 𝑠 ∖ { ∅ } ) ) ∧ ¬ ∅ ∈ ( 𝑠 ∖ { ∅ } ) ) ) ) |
| 52 | dmeq | ⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → dom 𝑓 = dom ( I ↾ ( 𝑠 ∖ { ∅ } ) ) ) | |
| 53 | dmresi | ⊢ dom ( I ↾ ( 𝑠 ∖ { ∅ } ) ) = ( 𝑠 ∖ { ∅ } ) | |
| 54 | 52 53 | eqtrdi | ⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → dom 𝑓 = ( 𝑠 ∖ { ∅ } ) ) |
| 55 | 54 | ixpeq1d | ⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) = X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) ( 𝑓 ‘ 𝑥 ) ) |
| 56 | fveq1 | ⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → ( 𝑓 ‘ 𝑥 ) = ( ( I ↾ ( 𝑠 ∖ { ∅ } ) ) ‘ 𝑥 ) ) | |
| 57 | fvresi | ⊢ ( 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) → ( ( I ↾ ( 𝑠 ∖ { ∅ } ) ) ‘ 𝑥 ) = 𝑥 ) | |
| 58 | 56 57 | sylan9eq | ⊢ ( ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) ∧ 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) |
| 59 | 58 | ixpeq2dva | ⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) ( 𝑓 ‘ 𝑥 ) = X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) 𝑥 ) |
| 60 | 55 59 | eqtrd | ⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) = X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) 𝑥 ) |
| 61 | 60 | neeq1d | ⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → ( X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ↔ X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) 𝑥 ≠ ∅ ) ) |
| 62 | 51 61 | imbi12d | ⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) ↔ ( ( Fun ( I ↾ ( 𝑠 ∖ { ∅ } ) ) ∧ ¬ ∅ ∈ ( 𝑠 ∖ { ∅ } ) ) → X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) 𝑥 ≠ ∅ ) ) ) |
| 63 | 43 62 | spcv | ⊢ ( ∀ 𝑓 ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) → ( ( Fun ( I ↾ ( 𝑠 ∖ { ∅ } ) ) ∧ ¬ ∅ ∈ ( 𝑠 ∖ { ∅ } ) ) → X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) 𝑥 ≠ ∅ ) ) |
| 64 | 38 39 63 | mp2ani | ⊢ ( ∀ 𝑓 ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) → X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) 𝑥 ≠ ∅ ) |
| 65 | n0 | ⊢ ( X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) 𝑥 ≠ ∅ ↔ ∃ 𝑔 𝑔 ∈ X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) 𝑥 ) | |
| 66 | vex | ⊢ 𝑔 ∈ V | |
| 67 | 66 | elixp | ⊢ ( 𝑔 ∈ X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) 𝑥 ↔ ( 𝑔 Fn ( 𝑠 ∖ { ∅ } ) ∧ ∀ 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 68 | eldifsn | ⊢ ( 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) ↔ ( 𝑥 ∈ 𝑠 ∧ 𝑥 ≠ ∅ ) ) | |
| 69 | 68 | imbi1i | ⊢ ( ( 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ( ( 𝑥 ∈ 𝑠 ∧ 𝑥 ≠ ∅ ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 70 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝑠 ∧ 𝑥 ≠ ∅ ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ( 𝑥 ∈ 𝑠 → ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ) | |
| 71 | 69 70 | bitri | ⊢ ( ( 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ( 𝑥 ∈ 𝑠 → ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 72 | 71 | ralbii2 | ⊢ ( ∀ 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ↔ ∀ 𝑥 ∈ 𝑠 ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 73 | neeq1 | ⊢ ( 𝑥 = 𝑡 → ( 𝑥 ≠ ∅ ↔ 𝑡 ≠ ∅ ) ) | |
| 74 | fveq2 | ⊢ ( 𝑥 = 𝑡 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑡 ) ) | |
| 75 | id | ⊢ ( 𝑥 = 𝑡 → 𝑥 = 𝑡 ) | |
| 76 | 74 75 | eleq12d | ⊢ ( 𝑥 = 𝑡 → ( ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ↔ ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) |
| 77 | 73 76 | imbi12d | ⊢ ( 𝑥 = 𝑡 → ( ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) ) |
| 78 | 77 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ 𝑠 ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) |
| 79 | 72 78 | bitri | ⊢ ( ∀ 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ↔ ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) |
| 80 | 79 | biimpi | ⊢ ( ∀ 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 → ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) |
| 81 | 67 80 | simplbiim | ⊢ ( 𝑔 ∈ X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) 𝑥 → ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) |
| 82 | 81 | eximi | ⊢ ( ∃ 𝑔 𝑔 ∈ X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) 𝑥 → ∃ 𝑔 ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) |
| 83 | 65 82 | sylbi | ⊢ ( X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) 𝑥 ≠ ∅ → ∃ 𝑔 ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) |
| 84 | 64 83 | syl | ⊢ ( ∀ 𝑓 ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) → ∃ 𝑔 ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) |
| 85 | 84 | alrimiv | ⊢ ( ∀ 𝑓 ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) → ∀ 𝑠 ∃ 𝑔 ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) |
| 86 | 35 85 | impbii | ⊢ ( ∀ 𝑠 ∃ 𝑔 ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ↔ ∀ 𝑓 ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) ) |
| 87 | 1 86 | bitri | ⊢ ( CHOICE ↔ ∀ 𝑓 ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) ) |