This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfac14 . By equipping S u. { P } for some P e/ S with the particular point topology, we can show that P is in the closure of S ; hence the sequence P ( x ) is in the product of the closures, and we can utilize this instance of ptcls to extract an element of the closure of X_ k e. I S . (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfac14lem.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| dfac14lem.s | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ∈ 𝑊 ) | ||
| dfac14lem.0 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ≠ ∅ ) | ||
| dfac14lem.p | ⊢ 𝑃 = 𝒫 ∪ 𝑆 | ||
| dfac14lem.r | ⊢ 𝑅 = { 𝑦 ∈ 𝒫 ( 𝑆 ∪ { 𝑃 } ) ∣ ( 𝑃 ∈ 𝑦 → 𝑦 = ( 𝑆 ∪ { 𝑃 } ) ) } | ||
| dfac14lem.j | ⊢ 𝐽 = ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) | ||
| dfac14lem.c | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ X 𝑥 ∈ 𝐼 𝑆 ) = X 𝑥 ∈ 𝐼 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) | ||
| Assertion | dfac14lem | ⊢ ( 𝜑 → X 𝑥 ∈ 𝐼 𝑆 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac14lem.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 2 | dfac14lem.s | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ∈ 𝑊 ) | |
| 3 | dfac14lem.0 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ≠ ∅ ) | |
| 4 | dfac14lem.p | ⊢ 𝑃 = 𝒫 ∪ 𝑆 | |
| 5 | dfac14lem.r | ⊢ 𝑅 = { 𝑦 ∈ 𝒫 ( 𝑆 ∪ { 𝑃 } ) ∣ ( 𝑃 ∈ 𝑦 → 𝑦 = ( 𝑆 ∪ { 𝑃 } ) ) } | |
| 6 | dfac14lem.j | ⊢ 𝐽 = ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) | |
| 7 | dfac14lem.c | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ X 𝑥 ∈ 𝐼 𝑆 ) = X 𝑥 ∈ 𝐼 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) | |
| 8 | eleq2w | ⊢ ( 𝑦 = 𝑧 → ( 𝑃 ∈ 𝑦 ↔ 𝑃 ∈ 𝑧 ) ) | |
| 9 | eqeq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 = ( 𝑆 ∪ { 𝑃 } ) ↔ 𝑧 = ( 𝑆 ∪ { 𝑃 } ) ) ) | |
| 10 | 8 9 | imbi12d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑃 ∈ 𝑦 → 𝑦 = ( 𝑆 ∪ { 𝑃 } ) ) ↔ ( 𝑃 ∈ 𝑧 → 𝑧 = ( 𝑆 ∪ { 𝑃 } ) ) ) ) |
| 11 | 10 5 | elrab2 | ⊢ ( 𝑧 ∈ 𝑅 ↔ ( 𝑧 ∈ 𝒫 ( 𝑆 ∪ { 𝑃 } ) ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = ( 𝑆 ∪ { 𝑃 } ) ) ) ) |
| 12 | 3 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝒫 ( 𝑆 ∪ { 𝑃 } ) ) → 𝑆 ≠ ∅ ) |
| 13 | ineq1 | ⊢ ( 𝑧 = ( 𝑆 ∪ { 𝑃 } ) → ( 𝑧 ∩ 𝑆 ) = ( ( 𝑆 ∪ { 𝑃 } ) ∩ 𝑆 ) ) | |
| 14 | ssun1 | ⊢ 𝑆 ⊆ ( 𝑆 ∪ { 𝑃 } ) | |
| 15 | sseqin2 | ⊢ ( 𝑆 ⊆ ( 𝑆 ∪ { 𝑃 } ) ↔ ( ( 𝑆 ∪ { 𝑃 } ) ∩ 𝑆 ) = 𝑆 ) | |
| 16 | 14 15 | mpbi | ⊢ ( ( 𝑆 ∪ { 𝑃 } ) ∩ 𝑆 ) = 𝑆 |
| 17 | 13 16 | eqtrdi | ⊢ ( 𝑧 = ( 𝑆 ∪ { 𝑃 } ) → ( 𝑧 ∩ 𝑆 ) = 𝑆 ) |
| 18 | 17 | neeq1d | ⊢ ( 𝑧 = ( 𝑆 ∪ { 𝑃 } ) → ( ( 𝑧 ∩ 𝑆 ) ≠ ∅ ↔ 𝑆 ≠ ∅ ) ) |
| 19 | 12 18 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝒫 ( 𝑆 ∪ { 𝑃 } ) ) → ( 𝑧 = ( 𝑆 ∪ { 𝑃 } ) → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) |
| 20 | 19 | imim2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝒫 ( 𝑆 ∪ { 𝑃 } ) ) → ( ( 𝑃 ∈ 𝑧 → 𝑧 = ( 𝑆 ∪ { 𝑃 } ) ) → ( 𝑃 ∈ 𝑧 → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 21 | 20 | expimpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑧 ∈ 𝒫 ( 𝑆 ∪ { 𝑃 } ) ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = ( 𝑆 ∪ { 𝑃 } ) ) ) → ( 𝑃 ∈ 𝑧 → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 22 | 11 21 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑧 ∈ 𝑅 → ( 𝑃 ∈ 𝑧 → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 23 | 22 | ralrimiv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∀ 𝑧 ∈ 𝑅 ( 𝑃 ∈ 𝑧 → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) |
| 24 | snex | ⊢ { 𝑃 } ∈ V | |
| 25 | unexg | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ { 𝑃 } ∈ V ) → ( 𝑆 ∪ { 𝑃 } ) ∈ V ) | |
| 26 | 2 24 25 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ∪ { 𝑃 } ) ∈ V ) |
| 27 | ssun2 | ⊢ { 𝑃 } ⊆ ( 𝑆 ∪ { 𝑃 } ) | |
| 28 | uniexg | ⊢ ( 𝑆 ∈ 𝑊 → ∪ 𝑆 ∈ V ) | |
| 29 | pwexg | ⊢ ( ∪ 𝑆 ∈ V → 𝒫 ∪ 𝑆 ∈ V ) | |
| 30 | 2 28 29 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝒫 ∪ 𝑆 ∈ V ) |
| 31 | 4 30 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑃 ∈ V ) |
| 32 | snidg | ⊢ ( 𝑃 ∈ V → 𝑃 ∈ { 𝑃 } ) | |
| 33 | 31 32 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑃 ∈ { 𝑃 } ) |
| 34 | 27 33 | sselid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑃 ∈ ( 𝑆 ∪ { 𝑃 } ) ) |
| 35 | epttop | ⊢ ( ( ( 𝑆 ∪ { 𝑃 } ) ∈ V ∧ 𝑃 ∈ ( 𝑆 ∪ { 𝑃 } ) ) → { 𝑦 ∈ 𝒫 ( 𝑆 ∪ { 𝑃 } ) ∣ ( 𝑃 ∈ 𝑦 → 𝑦 = ( 𝑆 ∪ { 𝑃 } ) ) } ∈ ( TopOn ‘ ( 𝑆 ∪ { 𝑃 } ) ) ) | |
| 36 | 26 34 35 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → { 𝑦 ∈ 𝒫 ( 𝑆 ∪ { 𝑃 } ) ∣ ( 𝑃 ∈ 𝑦 → 𝑦 = ( 𝑆 ∪ { 𝑃 } ) ) } ∈ ( TopOn ‘ ( 𝑆 ∪ { 𝑃 } ) ) ) |
| 37 | 5 36 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ ( TopOn ‘ ( 𝑆 ∪ { 𝑃 } ) ) ) |
| 38 | topontop | ⊢ ( 𝑅 ∈ ( TopOn ‘ ( 𝑆 ∪ { 𝑃 } ) ) → 𝑅 ∈ Top ) | |
| 39 | 37 38 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ Top ) |
| 40 | toponuni | ⊢ ( 𝑅 ∈ ( TopOn ‘ ( 𝑆 ∪ { 𝑃 } ) ) → ( 𝑆 ∪ { 𝑃 } ) = ∪ 𝑅 ) | |
| 41 | 37 40 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ∪ { 𝑃 } ) = ∪ 𝑅 ) |
| 42 | 14 41 | sseqtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ⊆ ∪ 𝑅 ) |
| 43 | 34 41 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑃 ∈ ∪ 𝑅 ) |
| 44 | eqid | ⊢ ∪ 𝑅 = ∪ 𝑅 | |
| 45 | 44 | elcls | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ⊆ ∪ 𝑅 ∧ 𝑃 ∈ ∪ 𝑅 ) → ( 𝑃 ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑅 ( 𝑃 ∈ 𝑧 → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 46 | 39 42 43 45 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑃 ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑅 ( 𝑃 ∈ 𝑧 → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 47 | 23 46 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑃 ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 48 | 47 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑃 ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 49 | mptelixpg | ⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑃 ) ∈ X 𝑥 ∈ 𝐼 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝐼 𝑃 ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ) | |
| 50 | 1 49 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑃 ) ∈ X 𝑥 ∈ 𝐼 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝐼 𝑃 ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ) |
| 51 | 48 50 | mpbird | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝑃 ) ∈ X 𝑥 ∈ 𝐼 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 52 | 51 | ne0d | ⊢ ( 𝜑 → X 𝑥 ∈ 𝐼 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ≠ ∅ ) |
| 53 | 37 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ ( TopOn ‘ ( 𝑆 ∪ { 𝑃 } ) ) ) |
| 54 | 6 | pttopon | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐼 𝑅 ∈ ( TopOn ‘ ( 𝑆 ∪ { 𝑃 } ) ) ) → 𝐽 ∈ ( TopOn ‘ X 𝑥 ∈ 𝐼 ( 𝑆 ∪ { 𝑃 } ) ) ) |
| 55 | 1 53 54 | syl2anc | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ X 𝑥 ∈ 𝐼 ( 𝑆 ∪ { 𝑃 } ) ) ) |
| 56 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ X 𝑥 ∈ 𝐼 ( 𝑆 ∪ { 𝑃 } ) ) → 𝐽 ∈ Top ) | |
| 57 | cls0 | ⊢ ( 𝐽 ∈ Top → ( ( cls ‘ 𝐽 ) ‘ ∅ ) = ∅ ) | |
| 58 | 55 56 57 | 3syl | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ ∅ ) = ∅ ) |
| 59 | 52 7 58 | 3netr4d | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ X 𝑥 ∈ 𝐼 𝑆 ) ≠ ( ( cls ‘ 𝐽 ) ‘ ∅ ) ) |
| 60 | fveq2 | ⊢ ( X 𝑥 ∈ 𝐼 𝑆 = ∅ → ( ( cls ‘ 𝐽 ) ‘ X 𝑥 ∈ 𝐼 𝑆 ) = ( ( cls ‘ 𝐽 ) ‘ ∅ ) ) | |
| 61 | 60 | necon3i | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ X 𝑥 ∈ 𝐼 𝑆 ) ≠ ( ( cls ‘ 𝐽 ) ‘ ∅ ) → X 𝑥 ∈ 𝐼 𝑆 ≠ ∅ ) |
| 62 | 59 61 | syl | ⊢ ( 𝜑 → X 𝑥 ∈ 𝐼 𝑆 ≠ ∅ ) |